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CHAPTER 1.  GENERAL INTRODUCTION

Overview

Modern methods in ab initio quantum mechanics have become efficient and accurate

enough to study many gas-phase systems.  However, chemists often work in the solution

phase.  The presence of solvent molecules has been shown to affect reaction mechanisms1,

lower reaction energy barriers2, participate in energy transfer with the solute3 and change the

physical properties of the solute4.  These effects would be overlooked in simple gas phase

calculations.  Careful study of specific solvents and solutes must be done in order to fully

understand the chemistry of the solution phase.

Water is a key solvent in chemical and biological applications.  The properties of an

individual water molecule (a monomer) and the behavior of thousands of molecules (bulk

solution) are well known for many solvents.  Much is also understood about aqueous

microsolvation (small clusters containing ten water molecules or fewer) and the solvation

characteristics when bulk water is chosen to solvate a solute.  However, much less is known

about how these properties behave as the cluster size transitions from the microsolvated

cluster size to the bulk.  This thesis will focus on species solvated with water clusters that are

large enough to exhibit the properties of the bulk but small enough to consist of fewer than

one hundred solvent molecules.  New methods to study such systems will also be presented.

Dissertation Organization

This introduction describes ab initio and solvation methods utilized in the following

chapters of this thesis.   The next four chapters describe studies of various solutes solvated by

water molecules, while the last three chapters involve new solvation method development.
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Chapter 2 details the aqueous solvation of fluorine and chlorine anions with water

clusters of various size (n=1-17 for F-, n=1-20 for Cl-).  The goal of this study was to

visually examine the lowest energy structure for each cluster size and determine if the solute

was fully solvated with a complete first solvation shell.  Chapter 3 is a systematic study of

the dipole moment of a single water molecule when in the presence of other water molecules.

Solvent molecules were added until the dipole moment of the solute water molecule was the

same as that of a single water molecule in the presence of the bulk.  The aqueous solvation of

two different bihalide anions is presented in Chapter 4.  The global minimum structure for

each cluster size (n=1-6 water molecules) is visually inspected and compared to other low

energy species. The aqueous solvation of the nitrate anion is presented in Chapter 5. The goal

of this project was to determine whether or not the solute was completely solvated with only

15-32 water molecules.  This study is the first to explore fully optimized structures at the

MP2 level of theory for clusters of this size.

The remaining chapters describe the details of the development of new solvation

methods.  Chapter 6 presents the open-shell effective fragment potential (EFP) method.  The

open-shell EFP method is based upon spin restricted open-shell Hartree Fock and describes

intermolecular interactions with electrostatics, polarization and exchange repulsion.  Chapter

7 introduces the derivation for open-shell dispersion for the EFP method.  Chapter 8 focuses

on the implementation of the exchange repulsion energy between EFPs and ab initio

molecules.  A corresponding Fock operator is also discussed, as well as what is needed to

implement the gradient.
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Theoretical Background

Ab initio methods

Ab initio methods are derived from the first principles of quantum mechanics.  If one

desires to study the behavior of quantum systems, a function must be available to describe

the state of the system at any time.    To attain this goal, the time dependent Schrödinger

equation would have to be solved.  For the general case, the time dependent Schrödinger

equation is

 

!"(r,t)

!t
= #

i

!
H"(r,t)                             (1)

The state function, ! , describes the position of the particles ( r ) which changes as a function

of time (t),  ! is the division of Plank’s constant by 2! , i  is the square root of –1 and H is

the Hamiltonian operator.  The number of dimensions represented by r can vary from system

to system.

One simplification of ab initio methods comes by applying the time independent

Schrödinger equation to systems that do not depend upon time.  The time independent

Schrödinger equation uses the Hamiltonian operator (H) to operate on the time independent

wavefunction of the system (! ) in order to obtain the energy of the system (E) with that

particular wavefunction:

H! = E! (2)

The complete Hamiltonian operator is:

H =  T
n
 + T

e
 + V

ne
 + V

ee
 + V

nn
(3)

Equation 3 includes the nuclear and electronic kinetic energy, the nuclear-electronic

attraction, the repulsive electron-electron potential and the repulsive nuclear-nuclear potential
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energy operators, respectively.  Each term in the Hamiltonian operator can be expressed

explicitly as follows

H = !
1

2

"
2

mAA=1

n

# !
1

2
"i

2

i=1

e

# !
ZA

r
1AA=1

n

#
i=1

e

# +
1

rijj<i

#
i=1

e

# +
ZAZB

rABB<A

#
A=1

n

# (4)

In Eq. (4), ! is the Laplacian operator, mA is the mass ratio between a nucleus and an

electron, Z is the nuclear charge, r is a distance between two particles, and the system

contains n nuclei and e electrons. Though Eq. (4) represents the true Hamiltonian,

simplifications must be made in order to make Eq. (2) easily solvable.

Use of the Born-Oppenheimer approximation5, which assumes the nuclei to be

stationary while allowing the electrons to move freely, eliminates the kinetic energy of the

nuclei from Eq. (4).  If the nuclei are assumed to be stationary, the nuclear-nuclear potential

energy can be calculated once and held as a constant.  These two simplifications allow us to

write Eq. (4) as

H = !
1

2
"i

2

i=1

e

# !
ZA

r
1AA=1

n

#
i=1

e

# +
1

rijj<i

#
i=1

e

# (5)

One can now use Eq. (5) to solve the electronic Schrödinger equation shown in Eq. (6) and

obtain the electronic energy in the field of stationary nuclei:

H
elec
!
elec

= E
elec
!
elec

(6)

Once the electronic Schrödinger equation has been solved, the nuclear problem can be solved

separately.  The nuclei are allowed to change position within a field produced by the

system’s electrons. The total energy then becomes the sum of the electronic energy obtained

by solving Eq. (6) and the nuclear-nuclear potential energy.
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Several more approximations must be made for systems that contain more than one

electron.  If the system contains more than one electron, the problem cannot be solved

because it becomes inseparable.  Therefore, the multi-particle nature of the problem must be

simplified if this challenge is to be overcome.  The simplest ab initio method is the Hartree-

Fock (HF) method, which seeks to solve the time independent Schrödinger equation in a self-

consistent manner.  The Hartree-Fock approximation is designed to simplify the Hamiltonian

operator in Eq. (5) for multi-electron systems.  The Hartree-Fock approximation simplifies

the electron-electron potential energy by replacing explicit electron-electron interactions with

an averaged interaction.  The ith electron experiences an average interaction with all other

electrons through the field potential, vHF, resulting from the presence of the other electrons.

The one electron Fock operator can be written as

F = !
1

2
"

i

2

i=1

e

# !
Z
A

r
iAA=1

n

#
i=1

e

#  + $
HF

(i)
i=1

e

# (7)

The electron-electron potential energy is replaced with an averaged interaction ! HF
(i)

thereby eliminating the inseparability problem of the Hamiltonian operator.

A many-electron system can be described by the one-electron orbitals of a Hartree

product.  An anti-symmetric wavefunction is obtained by a normalized linear combination of

Hartree products and a Slater determinant can be used to cast the anti-symmetric

wavefunction into the form of a determinant. Each one-electron orbital is generally taken to

be a linear combination of basis functions, often called atomic orbitals (LCAO).  The ith

molecular orbital may be represented by summing over all atomic basis functionsµ

!
i
= Cµi"µ

µ

# (8)



www.manaraa.com

6

where Cµi are the LCAO coefficients.

If a complete basis set were chosen, the expansion in Eq. (8) would be exact.

However, in Hilbert space, a complete basis set is infinite, so such a calculation is not

practical.  To make the calculations tractable, quantum chemists truncate the basis set to a

finite number of basis functions.  Typically, the basis set is chosen to be as large as

computationally possible, because a larger basis set gives more flexibility to the molecular

orbitals.

At the beginning of a Hartree-Fock calculation, the wavefunction and the energy are

unknown.  In order to begin the self-consistent iterations of the HF method, a guess of the

electronic orbitals is typically made from which the density can be obtained. The Fock

matrix, which includes the one electron Hamiltonian and the quantum mechanical two-

electron integrals, is then formed and diagonalized.  The energy eigenvalues for the

orthogonal molecular orbitals are obtained.  Using the molecular orbitals obtained during the

calculation, one can make a new guess at the density and repeat the process until

convergence is reached.

Hartree-Fock is a relatively simple level of ab initio theory.  It is advantageous

because many chemical systems of interest can be calculated at the HF level of theory on

modern computers.  Another advantage to Hartree-Fock is that it is variational.  The variation

principle states that the energy of a trial set of molecular orbitals is guaranteed to be an upper

bound to the true energy:

E ! "
trial
| H |"

trial
= E

trial
(9)
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As the set of molecular orbitals changes and improves during the SCF iterations, the energy

will approach the true energy.

The electronic wavefunction can be treated three different ways within the Hartree-

Fock approach.  Spin restricted Hartree-Fock (RHF) occupies each spatial orbital with two

electrons- one alpha and one beta spin electron.  RHF is used exclusively for closed shell

systems where no electrons are left unpaired.  Spin restricted open-shell Hartree-Fock

(ROHF)6 uses restricted spin orbitals and restricted determinants.  Unlike RHF, one or two

electrons can occupy the ROHF spatial orbitals.  An electron of alpha or beta spin may

occupy singly occupied spatial orbitals while doubly occupied spatial orbitals are occupied

just as RHF spatial orbitals are.

An alternative open shell Hartree-Fock method is spin unrestricted Hartree-Fock

(UHF)7.  The UHF wavefunction partitions electrons of different spin into different spatial

orbitals. Therefore, each orbital is singly occupied.  The energy of UHF wavefunctions may

be lower than that of ROHF wavefunctions because of the greater number of spatial orbitals

in the UHF method.  However, the UHF wavefunction suffers from spin contamination,

because the wavefunction is not an eigenfunction of the spin operator S
2

^

.

The disadvantage to Hartree-Fock is that it includes no provision to describe the

correlated motion of electrons (often referred to as dynamic correlation).  The ability to

include dynamic correlation is lost by averaging the electron-electron potential in Eq. (8).

The exclusion of electron correlation leads to inaccurate energy predictions.  Although the

absolute magnitude of the dynamic correlation energy is small compared to the total

electronic energy, the variation in the dynamic correlation correction across a potential
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energy surface is sufficiently large that its omission causes large errors in relative energies

for chemical processes.

In order to recover the dynamic electron correlation energy, higher levels of theory

must be used.  These levels of theory are typically initiated with a Hartree-Fock calculation

to obtain a reference wavefunction.  One such method is the Møller-Plesset8 perturbation

theory and is most commonly used with a second order perturbation (MP2).  This method

adds a small perturbation, !, to the Hamiltonian from the HF calculation (H0):

H = H0 + !                                                                            (10)

The Hartree-Fock energy (E
0
) includes the zeroth-order and first order (E

1
) energy

corrections.  Therefore, the first correction to the Hartree Fock energy comes via second-

order perturbation theory (MP2).  The second-order energy is obtained by summing equation

12 over all states but the ground state:

E
0

(2)
=

0 |! | n
2

E
0

(0)
" E

n

(0)

n

# (12)

Though more computationally expensive than HF, an MP2 calculation is feasible for

many systems of interest and can be adapted to work well on modern, parallel computer

systems.  Because the exact Hamiltonian is not used, perturbation theory is not variational.

Perturbation theory can be extended to higher orders of energy corrections but, in general,

convergence may become a problem for MPn as n grows larger.

A more robust level of theory than perturbation theory is coupled cluster theory9,10,

which is also based on many body expansions.  A cluster operator in coupled cluster theory

operates on a Hartree-Fock reference wavefunction.  The complete cluster operator would
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operate on all possible electron excitations, starting with one operator for singles, another for

doubles and up to the number of electrons (n) in the system of iinterest. The operator

involved in coupled cluster theory, when defined by a Taylor series expansion is

e
T

^

= 1+ T

^

+
T

^ 2

2!
+
T

^ 3

3!
+ ...                                                        (13)

and the cluster operator T
^

is equal to

T

^

= T

^

1+ T

^

2+ ...+T

^

n                                                                (14)

where T
^

1 is the single electron excitation operator, T
^

2 is the double electron excitation

operator and so on.

In order to keep the computational cost feasible and still obtain much of the electron

correlation, it is common to use coupled cluster with singles and doubles (CCSD), or singles,

doubles and triples (CCSD(T)), where the triples are obtained using perturbation theory

instead of in an iterative manner.

All of the electron correlation energy could be recovered if one could use an infinite

basis set within a full configuration-interaction (CI) calculation11,12. The CI wavefunction is

defined below:

! = "
0
+ ci

a
" i

a

a

virt

#
i

occ

# + cij
ab
" ij

ab

a<b

virt

#
i< j

occ

# + cijk
abc
" ijk

abc

a<b<c

virt

#
i< j<k

occ

# + ...            (15)

Eq. (15) can be truncated after any term but full CI excites all n electrons of the system into

the virtual orbitals.  However, full CI is computationally expensive, since it scales

exponentially with the size of the system, and an infinite basis set cannot be used in any

application.
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Density Functional Theory

Density Functional Theory (DFT) has become a popular alternative to ab initio

methods for studying molecular structures and energies.   DFT does not attempt to solve the

Schrödinger equation like Hartree-Fock does.  DFT starts with the premise that the energy is

a functional of the density, ! (x,y,z), and the density is a function of the Cartesian

coordinates of the nuclei [E(!(x,y,z))]. While this premise is true, the function that relates the

energy to the density is unknown.

Kohn and Sham proposed a method to obtain the energy from the density of a system

of non-interacting electrons13 analogous to the independent particle approach in Hartree-Fock.

The determination of the density is most commonly done with the Kohn-Sham formalism

which states that it is possible to calculate the molecular energy from the density without the

ground-state wave function.  The one-electron Hamiltonian for the reference system of non-

interacting electrons is as follows

H

^

= !
1

2
"

i

2
+ v

s
r
i( )

#

$%
&

'(i=1

n

) (16)

where v
s
r
i( )  defines an external potential. This is an exactly solvable problem that provides a

set of Kohn-Sham orbitals that provides the starting point for an iterative process that is

similar to the iterative HF process. A correction term, provided by exchange and correlation

functionals is added to the kinetic energy, Coulomb and electron-nuclear attraction

functionals to yield the DFT energy.

The most challenging part of obtaining the total DFT energy is determining

appropriate exchange and correlation functionals. Many different functionals contain fitted
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parameters, each having parameters fit to describe a specific type of chemical systems in

order to obtain the exchange-correlation energy.

The computational cost of most commonly used DFT functionals is similar to that of

Hartree-Fock.  DFT does have the ability to include some electron correlation via the

correlation functional.  The accuracy of DFT can approach that of MP2 if the proper fitted

functional is chosen, but it can be worse than Hartree-Fock if an improper functional is

chosen or if a good functional does not exist for a given chemical system of interest.

Solvation Methods

Solvation methods are typically divided into two major classes:  continuum models

and explicit models.  Continuum models do not account for individual solvent molecules and

therefore do not account for individual solvent-solute interactions.  Instead, a pre-defined

electric field of the continuum model interacts with the solute.  The advantage of continuum

models is that they are computationally inexpensive and attempt to describe the

characteristics of the bulk solution without the need to explicitly define tens of thousands of

individual solvent molecules in a calculation.

Explicit solvent models describe specific solvent molecules and their intermolecular

interactions with the solute and solvent molecules.  An example of an explicit solvent model

is the effective fragment potential (EFP) model.  The first implementation of the EFP model

was designed exclusively for the water molecule (EFP1)14.  The original implementation of

the EFP1 method was based upon Hartree-Fock and the goal of the method was to reproduce



www.manaraa.com

12

Hartree-Fock results without the computational cost associated with Hartree-Fock.  An EFP1

potential based upon DFT has also been implemented with success15.

The EFP1 water potentials include the following intermolecular interactions:

electrostatics (Coulomb effects), polarization (induction) and a term including both

exchange-repulsion and charge transfer.  The only difference between the two EFP1 methods

is the level of theory from which the intermolecular interactions are based.  The combined

exchange-repulsion/charge transfer energy term was fitted based upon numerous calculations

on the water dimer.

EFP1 proved to be both efficient and effective at studying a variety of solvated

systems16-19.  The biggest limitation, though, was that it was available only for the water

molecule.  In order to extend the EFP method to the general case, an analytic expression had

to be derived for all terms, including the exchange-repulsion.  The general form of the EFP

method is called EFP220.  EFP2 also has the ability to describe charge transfer21 and

dispersion effects22.

The EFP method is computationally cheaper than describing each solvent molecule

with an ab initio level of theory, yet it is able to accurately reproduce ab initio results.  In

some cases, the EFP method can be used to study solvated properties of an ab initio solute,

while to do such a calculation with a fully ab initio method would require careful thought and

development of new methods.  An example of such a study is given in Chapter 3 of this

thesis.

All of the ab initio methods, density functional theory and the solvation methods

described here are available in the General Atomic and Molecular Electronic Structure

System (GAMESS)23,24.
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CHAPTER 2.  SOLVATION OF FLUORINE AND CHLORINE ANIONS

A paper published in The Journal of Physical Chemistry A

Daniel D. Kemp and Mark S. Gordon

Abstract

The solvation of fluoride and chloride anions (F- and Cl-, respectively) by water has been

studied using effective fragment potentials (EFP) for the water molecules and ab initio

quantum mechanics for the anions.  In particular, the number of water molecules required to

fully surround each anion has been investigated.  Monte Carlo calculations have been

employed in an attempt to find the solvated system X-(H2O)n (X= F, Cl) with the lowest

energy for each value of n.  It is predicted that 18 water molecules are required to form a

complete solvation shell around a Cl- anion, where “complete solvation” is interpreted as an

ion that is completely surrounded by solvent molecules.  Although fewer water molecules

may fully solvate the Cl- anion, such structures are higher in energy than partially solvated

ones until n ! 18.  Calculations on the F- anion suggest that 15 water molecules are required

for a complete solvation shell.  The EFP predictions are in good agreement with relative

energies predicted by ab initio energy calculations at the EFP geometries.

I.  Introduction

Solvation effects play an important role in many different areas of chemistry.

Spectroscopy, reaction mechanisms and kinetics are examples of phenomena that are affected

by the presence or absence of a solvent.  In this study, the effective fragment potential (EFP)

method1,2 is employed to investigate the solvation of fluoride and chloride anions (F- and Cl-,

respectively).  Water solvated Cl- and F- anions have been the subject of many other

theoretical studies3-48 and several relevant experimental studies49,50 have been performed on
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the chloride ion.  Smaller water clusters, usually involving < 10 water molecules, are most

common because of computational limitations.  When applied to a halide anion X-, the focus

of many microsolvation studies is to determine how many water molecules are required to

see a transition from a surface to an interior state.  A surface state is defined as X- resting “on

top” of a cluster of water molecules, while an interior state is defined as a structure in which

X- is “inside” a water cluster cage.

The primary focus of this study is to analyze the transition from surface to completely

solvated anions in X-(H2O)n (X= F, Cl) as n increases.  Also of interest is the value of n at

which interior structures begin to appear even if they are not global minima.  The structures

involving small numbers of water molecules provide insight into the microsolvation of the

anions while the fully solvated structures provide increasingly useful information about the

bulk solution.  Details of the computational approach are provided in Section II.

An additional motivation is to test the EFP method against the corresponding

predictions of Hartree-Fock (HF) and Møller-Plesset second order perturbation theory

(MP2)51-54.  The EFP method was developed for the water molecule and was designed to

reproduce HF results for aqueous solvation while requiring considerably less computational

cost.1,2

The EFP approach has been successfully applied to a variety of problems, including

the solvation of small cations55, the solvation of the Menshutkin reaction56, the solvation of an

SN2 reaction57, and the energetics and structures of small water clusters58.

Recently, Webb and Merrill studied the solvation of small anions (X-(H2O)n) using the EFP

method.43  In their study, F- and Cl- anions were solvated by n=1-6 effective fragment

potentials.  The EFP predictions were compared with results obtained with HF optimizations
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and MP2 single point calculations.  Their results suggest that interior anions do not exist for

X-(H2O)n, for n=1-6.  The energy differences between structures within a given cluster of size

n were found to be small.  Comparisons between the present work and the results of Webb

and Merrill will be given in Section III.

II.  Computational Methods

Global minimum energy structure searches were performed using the Hartree-Fock

level of theory and the 6-31++G (d,p)59-62 basis set for X- anions.  All water molecules were

treated as EFPs.  The general atomic and molecular electronic structure system (GAMESS)

was used for all calculations.63

Searches for the minimum energy structures, including the global minimum, on the X-

(H2O)n potential energy surfaces employed a Monte Carlo64/simulated annealing code65.

Simulated annealing was used to initiate structure searches at 600 K and slowly cool the

system to 300 K.  Geometry optimizations (at 0 K) were performed after every 10 steps in the

simulation.  The number of EFP water molecules n was systematically increased from 1 to 15

(20) for F- (Cl-) to determine the smallest water cluster that fully solvates the anion as the

lowest-energy species.

To characterize each stationary point that was found by the Monte Carlo searches, the

Hessian (matrix of energy second derivatives) was calculated and diagonalized at each

stationary point.  Local minima are characterized by a positive definite Hessian.  Double

differencing was used to calculate the Hessians.

Single point fully ab initio energy calculations were performed on at least the five

lowest-energy structures for each value of n to compare relative EFP/HF, HF and MP2

energies for surface and interior structures. The same 6-31++G (d,p) basis set was used for
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the fully HF and MP2 calculations.  Reported energies at all levels of theory include zero

point energy (ZPE) corrections that were obtained from the Hessians in which the anion was

treated with HF and the EFP model described the water molecules.

In addition, MP2/6-311++(2df,p)66,67 geometry optimizations were initiated at the

equilibrium geometries found from the Monte Carlo calculations for F-(H2O)n, (for n=1-4).

The criterion for convergence was 10-5 Hartree/bohr.  Hessians were calculated at these

equilibrium geometries using double differencing.  Single point CCSD(T)68,69 calculations

were then performed on these optimized structures using the same basis set.

Although a few F-(H2O)n and Cl-(H2O)n structures were found that have one

imaginary frequency, the magnitude of these frequencies is small (usually < 50 cm-1) and

they are floppy modes involving the solvent molecules.  Because the Hessians are calculated

using finite differences of analytic gradients, these small imaginary frequencies may be

numerical noise.  In any case, none of the structures with an imaginary frequency were

predicted to be the lowest-energy structure by any level of theory.  Therefore, the structures

that have imaginary frequencies have no effect on the trend of moving from a surface anion

to a completely solvated anion for either fluoride or chloride.

III.  Results and Discussion

 A.  F-(H2O)n n=1-15

Global minimum structures with < 11 water molecules are always surface anions. The

first interior anion is seen when n=6 but interior anions exist as high-energy species until

n=12. The Monte Carlo simulations predict that 15 water molecules are required to fully

solvate the fluoride anion. Calculations were also performed on the fluoride anion with 17

water molecules in order to ensure that the solvation trend observed from 12 to 15 waters
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continues as n increases further.  If so, the surrounded anions should also exist with larger

water clusters.  This is found to be the case.

Starting with the first structure in Figure 2.1, all structures in this paper are labeled

with a unique name underneath the structure.  The names for each structure follow the format

XnI where X represents the anion in the structure, n is the number of water molecules present

and I is an alphabetical letter. The structures marked by a pound symbol (#) are interior

anions.  The structures marked with an asterisk (*) are the EFP global minimum structures.

When the global minimum structure for a given n is an interior anion, the lowest energy

surface anion is marked by an ampersand (&).

Following each XnI designation is a nomenclature used to describe the solvation

shells of the solvent environment.  First solvation shell solvent molecules participate in

hydrogen bonding with the solute anion, while second solvation shell molecules form

hydrogen bonds with the first solvation shell molecules.  Likewise, third shell molecules

hydrogen bond with second shell molecules.  A number in parenthesis (x) denotes the

number of water molecules in the first shell.  If separate groups of first solvation shell

molecules are present they are distinguished as (x,y) where x and y are the number of first

solvation shell water molecules in the two distinct groups.  Groups are considered separate if

they are not within hydrogen bonding distance (2.5 Å) of each other.  Similarly, the second

[x,y] and third {x,y} solvation shell water molecules are indicated, if present.  The total

number of water molecules can be obtained by adding the number of first, second and third

shell molecules.  Except for the first row in Figures 2.1 and 2.4, the structures in each row of

Figures 2.1-2.8 contain the same number of water molecules n.  Each consecutive row adds

one water molecule.
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Below this nomenclature, the EFP (HF) and [MP2] relative energies (kcal/mol) are

given in Figures 2.1-2.9. The energy difference (!E) between the energy E* of the EFP

global minimum structure and that of another structure (E) is obtained by subtracting E*

from E:

 

E ! E* = "E     (1)

Therefore, a positive !E indicates that the global minimum structure, determined using EFP

waters, is more stable than the structure with energy E.  A negative !E value indicates that

the structure with energy E is more stable at the corresponding level of theory.

 Local minima for F-(H2O)n, n=1-5 are illustrated in Figure 2.1.  Global minimum

structures are given in the first column of the figure. Structures F2C, F3C and F5C are either

planar or nearly planar and therefore cannot exist as interior anions. Therefore, interior

anions do not exist for n=1-5.  Note that for n=1-4, all water molecules reside in a given

hemisphere. The second column of Figure 2.1 presents local minima that are neither global

minimum nor interior structures.  Generally, the relative energies predicted by EFP are in

good agreement with those found using HF or MP2 at the EFP geometries, with deviations

on the order of 1 kcal/mol or less.

Figure 2.2 is organized similarly to Figure 2.1; only three structures are shown for

each value of n, n=6-11.  Structure F6C# is the first interior structure observed; however, it is

not the global minimum structure for n=6.  Although in a few cases the relative energies of

the structures changes as the level of theory changes, HF and MP2 agree that the EFP global

minimum is lower in energy than the lowest energy interior anion for n=6-11, and the

quantitative agreement among the three levels of theory is again very good, typically within 1

kcal/mol.
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                          F1A*  (1)                    F2A*   (1,1)                   F2B (2)                              F2C  (1,1)
                                                                                               0.2  (0.9)  [0.5]                   0.5   (0.4)  [0.6]

                  

                                   F3A* (3)                                        F3B  (3)                           F3C (2,1)
                                                                                   0.4  (-0.6)  [0.0]                0.3  (-1.4)  [-0.4]

                   

                              F4A*  (3,1)                                      F4B (4)                                       F4C (4)
                                                                               0.4   (1.3)   [0.5]                           0.4   (0.0)   [0.2]

  

                             F5A* (4,1)                                F5B  (3,1) + [1]                       F5C    (4) + [1]
                                                                               0.9  (0.1)  [-0.6]                     1.1   (-0.2)    [0.1]

Figure 2.1.  Local minimum structures for F-(H2O)n n=1-5.  An asterisk denotes the global minimum structure
for each value of n.  Each structure is given a unique name, XnI.  X is the anion present, n is based on the
number of water molecules and I is a unique alphabetic character.  The number of hydrogen bonds present in
different solvation shells is given.  Relative energy differences between the higher energy local minimum
structures and the EFP global minimum are given at the EFP (HF) [MP2] level of theory.  All relative energies
are given in kcal/mol.
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The EFP method suggests that the first global minimum structure that exists as an

interior anion occurs for n=12, F12A* in Figure 2.3.  Figure 2.3 also presents the lowest

energy surface anion structure in the third column.  All structures are local minima, including

those in the second column which represents a higher-energy species than the global

minimum. The lack of water molecules in the lower right quadrant (F12A*, F13A*, and

F14A*) and the lower left quadrant (F12A* and F14A*) illustrates incomplete solvation.  As

for the smaller clusters, there is generally good agreement among the three levels of theory.

An exception occurs for n=14.  Here, the EFP method predicts structure F14A* to be the

global minimum, whereas HF and MP2 predict structure F14B to be lower in energy.  Both

are interior structures, so the methods are in qualitative agreement.

The global minimum structure for n=15 (F15A* in Figure 2.3) is completely solvated.

Unlike n=12-14, every quadrant in structure 15A* has roughly the same concentration of

water molecules.  The other structure for n=15, F15B, is the lowest energy structure for n=15

that is not completely solvated.  This solvation trend continues for n=17, for which the global

minimum structure is F17A*.

The structures presented here generally agree with those of Webb and Merrill.43

However, their study optimized structures that were previously presented in the literature.

These authors predict EFP, HF and MP2 structures with two distinct groups of waters in the

first solvation shell to be the lowest energy species for n=2, 4, and 5 (EFP, HF and MP2).
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                                  F6A*  (5) + [1]                         F6B  (4) + [2]                        F6C#  (4,1)  +  [1]
                                                                                  1.5  (1.6)  [-0.3]                        1.5   (1.0)   [1.8]

                     
                              F7A* (5) + [2]                               F7B (5) + [2]                      F7C# (4,1) + [2]
                                                                                   1.1  (1.2)   [1.1]                    1.5   (0.3)   [1.9]

            
                            F8A* (6) + [2]                         F8B  (5) + [3]                      F8C (5,1) + [2]
                                                                               0.9  (-0.2)   [-0.7]                   1.5   (0.3)   [1.5]

    
                             F9A* (6) + [3]                             F9B (6) + [3]                     F9C# (5,1) + [3]
                                                                               1.3   (1.8)   [1.7]                  2.1    (1.9)    [2.5]

                 
                            F10A* (6) + [4]                            F10B  (6) + [4]                       F10C# (6) + [4]
                                                                                 0.6   (0.7)   [0.6]                      1.8  (1.1) [2.2]

                      
                          F11A* (6) + [5]                           F11B (6) + [5]                              F11C#  (6) + [5]
                                                                              1.3   (0.6)  [1.7]                             1.9   (1.0)  [2.3]

Figure 2.2.  Local minimum structures are given for F-(H2O)n where n=6-11.  The structures in the first column
are marked by an asterisk and are the global minima while # denotes the lowest energy interior anion for each

value of n.
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                            F12A* (6) + [6]                        F12B (6) + [6]                           F12C& (6) + [6]
                                                                           0.2    (0.4)   [0.4]                          1.3   (2.3)   [1.9]

 
                         F13A*  (6) + [7]                           F13B (6) + [7]                          F13C&   (6) + [5] + {2}
                                                                             1.8    (2.1)   [2.8]                             2.9   (3.0)  [3.3]

 
                        F14A* (7) + [7]                                 F14B  (6) + [8]                        F14C& (6) + [6] + {2}
                                                                                0.5   (-1.9)   [-2.4]                           2.1   (0.0)   [0.3]

 
                                                     F15A*  (7) + [8]                          F15B   (6) + [9]
                                                                                                         1.8   (0.0)   [0.2]

  
                                        F17A*                                        F17B                                   F17C&
                                                                              1.0   (-0.2)   [0.2]                      1.1   (-1.8)   [0.3]

Figure 2.3.  The structures in the first column are global minima for F-(H2O)n n=12-15,17.  The second column
shows structures that are local minima but are higher in energy.  The structures in the third column are marked
by & and are the lowest energy structure that most closely resemble a surface anion.  Both F15A* and F17A*,

are completely solvated.
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The global minimum structure found by the Monte Carlo calculations reported here for n=5

is composed of two groups of water molecules, one of which appears to reside in a second

solvation shell.  For n=6 (EFP, HF and MP2), both the results of the Monte Carlo

calculations and those of Webb and Merrill predict a single group of first solvation shell

molecules in the global minimum structure.

B. Cl-(H2O)n n=1-18

Monte Carlo calculations predict that no fewer than 18 water molecules are required

to completely solvate Cl-.  Monte Carlo calculations were also performed with the Cl- anion

and a water cluster with twenty water molecules to confirm the findings for n=18.  Global

minima for Cl-(H2O)n are given in Figures 2.4-2.8 in the left hand column.  The same

nomenclature as that for the F- anion is used.

The second column in Figures 2.4-2.8 presents a higher-energy local minimum.  The

structures that most resemble an interior anion structure for n=1-5 are given in the third

column of Figure 2.4.  Structures CL2B and CL3C are planar, while structures CL4C and

CL5C have a large space without water molecules located towards the right-hand side of

each structure.  While these structures are closest to being an interior anion for n=2-5, they

are actually surface anions. This is similar to the results found for F-.  The global minima

obtained for Cl-(H2O)n n=1-6 are in good agreement with the results of Webb and Merrill at

all levels of theory.43 No interior anions were found for n=1-5 by either the Monte Carlo

calculations or Webb and Merrill.  The relative energies predicted by the three levels of

theory are in good agreement with each other.
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                    CL1A* (1)                                        CL2A*   (2)                                      CL2B   (1,1)

                                                                                                                                    0.2   (-0.2)  [0.9]

             
                        CL3A*  (3)                                                CL3B   (3)                                 CL3C   (2,1)

                                                                                     1.2   (0.8)  [3.2]                            1.3   (0.4)  [2.1]

            
                       CL4A* (3) + [1]                                 CL4B  (3) + [1]                                    CL4C  (3,1)

                                                                                  0.6   (1.0)   [0.0]                                 0.3  (0.5)  [1.4]

          

                       CL5A* (5)                                           CL5B  (4) + [1]                                CL5C  (3,2)

                                                                                  0.2   (-0.6)  [-0.7]                            0.9  (0.0)  [1.6]

Figure 2.4.  Local minimum structures for Cl-(H2O)n n=1-5.  The first column represents the global

minimum structure for a given n.  The second column is a local minimum structure, but a higher energy species

than the global minimum.  The structure in the third column is the lowest energy species that most resembles an

interior anion.  The nomenclature used for Figures 2.1-2.3 is used here also.
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                     CL6A* (5) + [1]                                 CL6B (4) + [2]                                  CL6C#  (3,3)
                                                                                 3.2  (2.0)  [2.5]                                0.6  (0.2)  [3.3]

        
                    CL7A* (5) + [2]                                CL7B (6) + [1]                                    CL7C#  (4,3)
                                                                              2.0  (1.9)  [4.3]                                   2.4  (2.3)  [5.9]

          
                    CL8A*  (7) + [1]                                   CL8B  (6) + [2]                             CL8C# (4,3) + [1]
                                                                                  0.7  (0.1)  [-0.9]                              1.9  (1.1)   [2.7]

  
                      CL9A* (7) + [2]                               CL9B  (7) + [2]                              CL9C# (4,3) + [2]
                                                                               0.1  (0.6)  [-0.4]                                2.0  (1.2)  [3.5]

Figure 2.5.  Local minimum structures for Cl-(H2O)n for n=6-9.  The first column shows the global minimum
structure for a given n.  The second column is a local minimum structure, but a higher energy species than the

structure in the first column.  The third column represents the lowest energy interior anion structures.
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                   CL10A* (7) + [3]                          CL10B  (7) + [2] + {1}                        CL10C#  (7) + [3]
                                                                                1.2  (0.3)  [1.5]                                3.3  (1.5)  [5.2]

     
                 CL11A*  (7) + [4]                            CL11B (6) + [5]                                 CL11C# (6,1) + [4]
                                                                           0.9   (0.2)  [1.0]                                    3.2   (3.2)   [4.2]

            
                  CL12A*  (7) + [5]                                  CL12B (7) + [5]                               CL12C# (7) + [5]
                                                                                 0.0  (-0.3)  [-0.2]                                 3.9  (3.5)  [4.1]

                    
                CL13A* (8) + [5]                                 CL13B (6) + [6] + {1}                         CL13C# (7) + [6]
                                                                                 0.7   (-0.5)   [-0.9]                               2.9  (2.1)  [4.5]
Figure 2.6.  Local minimum structures for Cl-(H2O)n, n=10-13.  The same nomenclature and format of Figure
2.5 is used here.  Although interior anions exist for each value of n, none of these are the global minimum
structure.
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                      CL14A* (7) + [7]                             CL14B (8) + [6]                        CL14C# (7) + [6] + {1}
                                                                                0.5   (0.6)  [0.6]                               4.5  (4.1)  [7.1]

 
                         CL15A* (8) + [7]                       CL15B  (7) + [7] + {1}                   CL15C#  (8) + [7]
                                                                                0.2   (-1.9)   [-1.5]                         4.1   (3.1)   [4.3]

                 CL16A* (7) + [6] + {3}                   CL16B (7) + [7] + {2}                         CL16C#  (8) + [8]
                                                                               1.0   (1.7)  [0.4]                                 2.0   (3.0)   [2.9]

                        CL17A* (8) + [9]                        CL17B (7) + [8] + {2}                   CL17C#   (8) + [9]
                                                                                2.1   (-0.3)   [1.9]                          1.7   (-0.1)  [1.6]
Figure 2.7.  Three structures for Cl-(H2O)n, n=14-17.  The same nomenclature and format of Figures 2.5 and 2.6
is used here again.  As with the smaller clusters, none of the interior anions are global minimum structures.
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Figures 2.5-2.7 give local minima for Cl-(H2O)n for n=6-17.  As for F-, the first

interior anions are observed for Cl-(H2O)n when n=6; the lowest energy example is given in

the third column of Figure 2.5. As the water cluster size grows, the anion approaches

complete solvation. The interior anions do not exist as global minima until the completely

solvated structure is found (n=18):  Recall the global minima in Figure 2.3 for examples of

interior anions.  Somewhat greater disagreement among the three levels of theory is observed

for Cl- than for F-.  Disparities as large as 2-3 kcal/mol are found for CL7B and CL7C#, for

example.  In nearly all cases, EFP and HF are in good agreement, whereas these two methods

deviate somewhat from the MP2 relative energies.  Therefore, these errors arise from

deficiencies in the HF method, from which this EFP method is derived, and are not inherent

in the EFP approach itself.  Nonetheless, the three methods do consistently predict similar

trends with regard to the relative stabilities of interior versus exterior structures.

Positive relative energies for n=18 illustrate the stability of the fully solvated anion

relative to the partially solvated anion.  HF and MP2 single point energies at the five lowest

EFP structures for Cl-(H2O)18 predict that the global minimum is the completely solvated

CL18A* structure (see Figure 2.8).  The EFP, HF and MP2 relative energies predict a fully

solvated anion to be lower in energy by 4.3, 1.8, 4.2 kcal/mol, respectively.  HF and MP2

single points at the five lowest EFP structures for n=20 suggest a completely solvated anion

to be more stable than a partially solvated anion by 1.3 (EFP), 2.1 (HF), 4.2 (MP2) kcal/mol.
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                                                CL18A*   (8) + [10]                         CL18B&   (7) + [8] + {3}
                                                                                                                  4.3   (1.8)   [4.2]

  
                           CL20A                                         CL20B (8) + [12]                        CL20C& (8) + [10] + {2}
                                                                                  0.6  (-1.1)  [0.7]                                3.6  (3.1)  [6.3]

Figure 2.8.  The local minima Cl-(H2O)n for n=18,20. The global minima for n=18 and n=20 are

interior anions and are completely solvated.  The relative energies between the global minimum and the lowest

energy surface anion is larger for n=20.  The structures in the last column are marked by & and are the lowest

energy structures that are not completely solvated.

Larger energy differences between interior and surface anions are observed for

Cl-(H2O)n than for F-(H2O)n.  The source of these higher energy differences may be the fact

that Cl- resists becoming an interior anion until complete solvation is obtained at n=18.

Comparing the experimental differential binding energies for each anion in Tables 2.1 and

2.2 show that small water clusters are more tightly bound to F- than Cl-.  The strong

interaction between F- and water molecules is likely to encourage interactions between the

water cluster and the anion resulting in interior anions that are relatively lower in energy than

the analogous chloride structures.
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C.  Binding energies

Binding energies and differential binding energies were calculated for F-(H2O)n (n=1-

15) and Cl-(H2O)n (n=1-18) at the EFP/HF, HF and MP2 levels of theory.  Boltzmann

averaged energies were calculated for each water cluster using the Boltzmann equation:
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#
  =   En            (2)

where Xi is the calculated energy of the ith structure including a zero point vibrational energy

correction (obtained from the EFP/HF Hessians). !Ei is calculated by taking the difference

between the energy of the ith structure and the lowest energy structure of a given cluster of n

water molecules; T = 298 K.  The result, En, is the Boltzmann averaged energy for all

structures composed of n water molecules.

The differential binding energy is defined as the energy difference for the following

process:

!De = X-(H2O)n  + H2O ! X-(H2O)n+1             (3)

where X= F- (Cl-) and n=0-14 (0-17).  The differential binding energies were calculated by

taking the Boltzmann averaged energy for X-(H2O)n+1 and subtracting it from the sum of the

Boltzmann averaged energy for X-(H2O)n and the energy of one water molecule. The

calculated differential binding energies are compared with available experimental values in

Table 2.1 and Table 2.2.
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The total binding energy is:

De = X-  +  nH2O   !  X-(H2O)n          (4)

The binding energies were calculated by taking the sum of the energy of the anion and n

water molecules and subtracting it from the Boltzmann averaged energy for the X-(H2O)n

system.  The results of these calculations are given in Table 3 and Table 4.

Both the experimental and calculated differential binding energies generally decrease

with increasing n.  For Cl-, the experimental values decrease monotonically, through n=6,

while some fluctuations are observed for all of the computed !De values.  For F-, some

fluctuations are found for both experiment and theory.  The fluctuations are not consistent

enough to be explained by obvious structural differences for the smaller clusters.

The most surprising fluctuation occurs for Cl-(H2O)18, 

 for which MP2 predicts that the

18th water molecule is more tightly bound than the first!  It may be that the unexpectedly high

differential binding energy for n=18 is due to the fact that the 18th water molecule enables the

water cluster to form an interior anion and to completely solvate Cl-.  While there is a smaller

fluctuation at the HF level from n=17 to n=18, no significant fluctuation exists for EFP.

Similar fluctuations were found by Webb and Merrill, for small values of n.

With some exceptions, the error in differential binding energies decreases as n

increases, so the percent error is roughly constant.  The HF errors are somewhat larger than

those found for the EFP method while, not surprisingly, MP2 is in the best agreement with

experiment.

In general, the HF and EFP total binding energies are in good agreement with each

other, with errors of approximately 15-25% relative to the experimental values.  So, once
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again, errors in the EFP predictions most likely reflect inadequacies in the underlying HF

method upon which the EFP parameterization is based,1,2 rather than on any inherent failing

of the EFP method itself.  Both methods exhibit the correct qualitative trends when compared

with experiment, but have significant quantitative errors.  However, the MP2 total binding

energies agree both quantitatively and qualitatively with experiment, suggesting the

importance of dynamic correlation.

D.  A Comparison between F-(H2O)n and HF(OH-)(H2O)n-1

In order to further assess the reliability of the EFP method, MP2 geometry

optimizations were performed on the lowest energy structures for F-(H2O)n n=1-4.  Since the

EFP method1,2 freezes the internal coordinates of the water molecule, it is important to

determine the impact of this approximation.  In the fully MP2 optimizations, the internal

coordinates of the water molecules were not constrained.

The MP2 optimizations explored both F-(H2O)n (n=1-4) and HF + OH- + (n-1) H2O.

The latter system could be formed from the former if the fluoride anion extracts a proton

from one of the water molecules.  If HF + OH- + (n-1) H2O is the global minimum, especially

if F-(H2O)n is not even a local minimum, the EFP method would be less meaningful for those

values of n.

The MP2 potential energy surface of F-(H2O) was calculated previously by

Janoschek37 who chose a 6-311+G(2df,p)66,67 basis set.  For consistency, the 6-311++G(2df,p)

basis set was used.  The optimized MP2 structure for F-(H2O) agrees well with the global

minimum found by Janoschek.  HF(OH-) is not a minimum on the potential energy surface.

The formation of HF is first observed when two water molecules are present to stabilize its

coexistence with OH-.  The resulting equilibrium geometry, F3D in Figure 2.9, is a local
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minimum.  At the CCSD(T)//MP2 level of theory, this local minimum is 5.8 kcal/mol above

the F-(H2O)3 global minimum. The HF bond distance in F3D is 1.06Å, while that of an

unsolvated hydrogen fluoride molecule is 0.96Å.  So, the HF bond is stretched due to the

presence of the OH-.

                       
                                                   F3A*                                                          F3D

                                                       [5.0]  5.8

                      
                        F4A*                                                        F4D                                                   F4E
                                                                                    [5.7]   4.5                                         [12.9]  11.0
Figure 2.9.  F-(H2O)n n=3,4 structures (left) are compared with the HF + OH- + n H2O n=2, 3 structures.  The
solvated fluoride structure is the global minimum in both cases and is marked by an asterisk.  Relative energy
differences in kcal/mol are given at the [MP2] and CCSD(T) levels of theory.

Two local minima for HF + OH- + 3H2O are shown in Figure 2.9.  One structure

involves a hydrogen bond between HF and hydroxide (structure F4D), while the other

involves a hydrogen bond between HF and a water molecule (F4E).  At the CCSD(T) level of

theory, structure F4D (F4E) is 4.5 (11.0) kcal/mol higher than the solvated fluoride anion

shown as structure F4A.

These results suggest that while HF + OH- do coexist with solvated F-, they are higher

on the potential energy surface. Using frozen internal coordinates in the EFP method is
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therefore reasonable for studying the solvated anions because protons are not easily extracted

from the water molecules.

IV.  Conclusions

The EFP method coupled with Monte Carlo simulations was employed to study the

solvation of fluoride and chloride anions.  The method provides a reliable approach for

analyzing anion solvation. The EFP, HF and MP2 calculations predict that no fewer than 15

water molecules are required to fully solvate a single fluoride anion.  All three levels of

theory predict that 18 water molecules are required for complete solvation of the chloride

anion.  The frozen internal coordinates of the EFP are appropriate for studying small water

clusters in the presence of F-, since proton transfer from a water molecule to the anion is not

favored thermodynamically. It is important to keep in mind, of course, that these results are

based on electronic energies at 0K.  It possible that the incorporation of temperature and

entropic effects could modify the number of waters needed to make interior anions most

favorable.

All three levels of theory predict the correct qualitative trends for both total and

differential binding energies.  MP2 binding energies are quantitatively accurate for both the

fluoride and the chloride anion when compared to experimental values.  EFP and HF errors

are similar, suggesting that these errors are inherent in the HF method, from which this

version of the EFP method is derived.  Chloride differential binding energies fluctuate as a

function of n for all levels of theory.  The largest error in nearly all cases arises from the

binding of the first water molecule to the anion.
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CHAPTER 3.  DIPOLE MOMENT OF WATER IN THE PRESENCE OF OTHER

WATER MOLECULES

A paper published in the Journal of Physical Chemistry A

Daniel D. Kemp, Mark S. Gordon

Abstract

The dipole moment of the gas phase water monomer is 1.85D.  When solvated in bulk water,

the dipole moment of an individual water molecule is observed to be enhanced to the much

larger value of 2.9 ± 0.6D.  In order to understand the origin of this dipole moment

enhancement, the effective fragment potential (EFP) method is used to solvate an ab initio

water molecule to predict the dipole moments for various cluster sizes.  The dipole moment

as a function of cluster size, nH2O, is investigated (for n=6-20 (even n), 26, 32, 41, and 50).

Localized charge distributions are used in conjunction with localized molecular orbitals to

interpret the dipole moment enhancement.  These calculations suggest that the enhancement

of the dipole moment originates from the decrease of the angle between the dipole vectors of

the lone pairs on oxygen as the number of hydrogen bonds to that oxygen increases.   Thus,

the decreased angle, and the consequent increase in water dipole moment, is most likely to

occur in environments with a larger number of hydrogen bonds, such as the center of a

cluster of water molecules.

I.  Introduction

Water is arguably the most important liquid and solvent, especially for biological and

biochemical applications.  Despite its broad impact and importance, many properties of water

are not fully understood. One important property is the dipole moment of water, which has

been the subject of many experimental1-6 and theoretical7-52 investigations.  Though the dipole



www.manaraa.com

45

moment of the water monomer has been experimentally1-2, 4-6 and computationally7-9

determined to be 1.85 D, there has been only one experimental report regarding the dipole

moment of a water molecule in bulk liquid water: Badyal et al3 employed x-ray diffraction

experimental techniques to determine that the dipole moment of a solvated water molecule is

2.9 ± 0.6 D.

Many theoretical studies have predicted the dipole moments of water clusters.9-53

These calculations have employed a variety of methods, including fully ab initio calculations

on relatively small clusters9 (n=1-6), molecular dynamics simulations on larger clusters using

model potentials (n=216,13,14 n=256,12,15 n=51210), and a mix of quantum

mechanical/molecular mechanical (QM/MM) methods17-19.  Some studies have focused on the

dipole moment of a single water molecule in an ice lattice20-23.  Each of these studies

produces a slightly different result, with most estimating that the dipole moment of a water

molecule in the bulk falls in the range 2.5D-3.5D.

The methods that use model potentials10-15,24 that include a polarization term generally

predict dipole moments more accurately than those that employ model potentials without

polarization.  Potentials that include only point charges and electrostatics apparently do not

accurately predict the dipole moment enhancement.  Dang11 has developed a polarizable

potential and has predicted average dipole moments per water molecule that closely resemble

the MP2 study of Gregory9 et. al for n=1-6.  The NCC model developed by Niesar et al.10

adds many-body polarizability to a previously developed potential and obtains an average

dipole moment of 2.8D per water molecule in a 512 water molecule cluster.

Tu and Laaksonen18 predicted the dipole moment of one ab initio water molecule

solvated by 1-4 water molecules represented by model potentials.  The dipole moment of the
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ab initio water increased to ~2.6D for n=4.  Molecular dynamics simulations of 256 water

molecules yielded an average value of 2.65 D for each water molecule within the cluster.

The present work systematically examines the dipole moment of an ab initio water

molecule as a function of the number of additional water molecules that are represented by a

sophisticated model potential.  In addition, an analysis of the origin of the dipole moment

enhancement is presented. The computational methods are presented in Section II.  Section

III presents the results and discussion of the calculations.   This is followed in Section IV by

a summary and conclusions.

II.  Computational methods

Dipole moments have been calculated by surrounding a quantum mechanics (QM)

water molecule by a cluster of n-1 effective fragment potential54,55 (EFP) waters.  An EFP is a

explicit model potential that is based on quantum mechanics and implemented in the General

Atomic and Molecular Electronic Structure System56,57 (GAMESS) software suite.  The EFP1

method was originally developed to model liquid water interactions.  That initial

implementation was based on Hartree-Fock, with a goal to reproduce ab initio calculations

while requiring significantly less computational effort54.  This method was later extended to

model water at the DFT level of theory58.  It was demonstrated in the latter work that a

combination of EFP1/DFT waters with an MP2 substrate provides an efficient and accurate

representation of a full MP2 calculation. An EFP includes three separate energy interaction

energies:  Coulomb, polarization and exchange repulsion + charge transfer. In each EFP,

Coulomb interaction sites are placed at all atom centers and all bond midpoints. Polarizability

centers are at the centroids of all LMOs. The DFT based EFP1 also includes some correlation

effects at short range.  Because of the success of the EFP1 model58-61 for water, a more
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general model called EFP2 has also been developed55.  EFP2 can be used to generate a model

potential for any species, but EFP2 has not yet been fully interfaced with quantum

mechanics.  The EFP1/DFT method is used in this paper.  The QM water is represented by

second order perturbation theory (MP2)62-65.

For the water monomer, MP2 optimizations were performed using three different

basis sets, to assess which basis sets(s) can accurately predict the gas phase water dipole

moment:  (1) the Dunning-Hay basis set with d and p polarization functions on O and H

respectively (DH(d,p))66,  (2) the augmented correlation-consistent double-zeta basis set

(aug-cc-pVDZ),67,68 and (3) the corresponding triple-zeta basis set, aug-cc-pVTZ67,68.

The general approach used here is similar to that employed by Tu and Laaksonen18,19.

For clusters containing n water molecules, with n!1, n-1 waters are represented by EFPs,

while the remaining water is described by MP2 with one of the aforementioned basis sets.  A

Metropolis-based Monte Carlo69 method was used in conjunction with simulated annealing70

(SA) to study clusters that contain up to 50 water molecules. For 6-20 water molecules, the

MP2 water molecule is described using the DH(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis

sets.  Monte Carlo  (MC) sampling on clusters containing 26, 32, 41, and 50 water molecules

employed only the DH (d,p) basis.  Dipole moments are predicted for the final structures

using the larger basis sets.

The matrix of energy second derivatives (Hessian) was calculated for each structure

to ensure that the structure is a local minimum on the potential energy surface and to provide

vibrational zero point energies.

In order to analyze the calculated dipole moments for various water clusters, the

localized charge distribution (LCD)73,74 method was employed.  Based on the use of the
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Hartree-Fock localized molecular orbitals (LMO)75,76, an LCD is a charge neutral localized

system that contains two electrons and two protons.  One can therefore calculate origin-

invariant LCD dipole moments that sum vectorially to the total molecular dipole moment.

These LCD dipoles can then be used to analyze the origin of the dipole moment

enhancement.  For the LMO and LCD calculations, the QM water is represented by Hartree

Fock with the aug-cc-pVTZ basis set, while the remaining waters are represented by EFPs.

The LMOs were obtained using the Boys75 approach first introduced by Edmiston and

Ruedenberg76.  Once the localized charge distributions are determined, individual dipole

moments for each LCD can be calculated.  Finally, we note that if an entire water cluster

were represented by a particular level of electronic structure theory (e.g., MP2) in a

supermolecule sense, it would be difficult (although not impossible77) to rigorously separate

the electron density of each water due to delocalization. Since only one quantum water is

present in this work, delocalization effects are not included here.

III.  Results and Discussion

A.  Water Monomer

As shown in Table 3.1, MP2/DH(d,p) overestimates the monomer dipole moment by

approximately 0.3D, while MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ predict monomer

dipole moments that are in excellent agreement with the experimental value.1,2,4-9  Since the

aug-cc-pVTZ basis set is significantly more computationally demanding than the other two

basis sets, the strategy followed here is to perform geometry optimizations and MC/SA

simulations using the two smaller basis sets, followed by single point calculations with the

largest basis set.



www.manaraa.com

49

Table 3.1.  Predicted MP2 dipole for the water monomer using three basis sets.  Computational cost is

given in basis functions.

Basis Set # Basis Functions MP2 Dipole

DH (d,p) 25 2.17 D

aug-cc-pVDZ 43 1.88 D

aug-cc-pVTZ 105 1.85 D

B.  Small clusters containing 6-20 water molecules

Day et al78 have previously performed EFP1/HF Monte Carlo simulations on water

clusters (H2O)n, for even n, ranging in size from 6-20 water molecules.  In the present work

the minima from this previous effort were used to initiate MC/SA simulations.

In order to sample all possible locations for the ab initio water molecule, the

MP2/DH(d,p) water molecule was placed at each unique position within the cluster; then a

Monte Carlo simulation was performed.  In each case, the lowest energy structure was

retained.  Once the lowest energy configuration was found for each n, the structure was re-

optimized using the DH (d,p) and aug-cc-pVDZ basis sets.  Single point energy calculations

using the aug-cc-pVTZ basis set were performed at the MP2/aug-cc-pVDZ geometries to

predict the dipole moment more accurately.

Example structures and their associated dipole moments for each value of n are given

in Figures 3.1-3.3.  All figures were produced using MacMolPlt79.  Energies relative to the

global minimum are given in kcal/mol.  The MP2/DH(d,p) dipole moment is given followed

by the aug-cc-pVDZ dipole moment in parentheses and the aug-cc-pVTZ dipole moment in

square brackets.
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6 H2O 2.85D (2.68 D) [2.60 D]                2.78 D (2.51 D) [2.46 D]                 2.9 D (2.72 D) [2.65 D]

                      0.0                                                         2.0                                           2.2        kcal/mol

                     

8 H2O   2.91 D  (2.72D)                        2.99 D  (2.87 D)  [2.72 D]                  2.91 D (2.79 D) [2.48 D]

                      0.0                                                      2.8                                            4.9    kcal/mol

                 

10 H2O  3.0 D (2.88D) [2.73 D]                2.91 D (2.73 D) [2.65]                      2.93 D (2.76 D) [2.63]

                     0.0                                                          1.2                                           7.0    kcal/mol

Figure 3.1.  A sample of minima from each cluster size containing 6, 8 and 10 water molecules.  The DH (d,p)

(aug-cc-pVDZ) [aug-cc-pVTZ] dipole (in Debye) of the ab initio water molecule within the cluster is given.

The global minimum structure found using the aug-cc-pVDZ is given on the left, with two higher energy

structures given for each value of n.  Relative energy differences (kcal/mol) from the global minimum are given

underneath each structure.

For each value of n, the Boltzmann averaged dipole moment, shown in Table 3.2, was

determined for T = 298 K.  As noted above for the water monomer, MP2 with the smaller

DH (d,p) basis set consistently predicts dipole moments that are 0.1 – 0.2D larger than those

predicted by MP2/aug-cc-pVDZ and approximately 0.2-0.3D larger than MP2/aug-cc-pVTZ.

The dipole moment enhancement is apparent even at six waters, for which the predicted

MP2/aug-cc-pVTZ dipole moment is already 2.54D, about 0.7D larger than that predicted for
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the water monomer at the same level of theory, and only ~0.4D less than the experimental

value for a water molecule in the bulk environment.

     

12 H2O  2.91 D (2.73 D) [2.64]                   2.91 D (2.72 D) [2.64]                   2.99 D (2.82 D) [2.73]

                   0.0                                                               0.7                                    1.6        kcal/mol

           

14 H2O 2.95 D (2.8 D) [2.70 D]                  2.92 D (2.74 D) [2.65 D]           2.98 D (2.87 D) [2.73 D]

                       0.0                                                          0.3                                        0.7    kcal/mol

  

16 H2O 3.0 D (2.87 D) [2.76]                   2.96 D (2.83 D) [2.69 D]             2.93 D (2.76 D) [2.67 D]

                        0.0                                                       0.4                                         0.9     kcal/mol

Figure 3.2.  Minimum energy structures for n=12, 14 and 16 H2O.  The same format used for the previous

figure is used here.
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18 H2O  2.93 D (2.77 D) [2.66 D]          2.94 D (2.76 D) [2.68 D]              3.05 D (3.00 D)  [2.80 D]

                       0.0                                           2.6                                         3.2     kcal/mol

      

20 H2O   3.16 D (2.97 D) [2.90 D]           2.94 D (2.77 D) [2.69 D]                 2.97 D (2.83 D) [2.71 D]

                       0.0                                                          0.2                                           2.4       kcal/mol

Figure 3.3.  Minima for n= 18, 20.  The same format used for the previous two figures is used here.

This is in good agreement with a previous ab initio study by Gregory et al9 in which

the MP2 dipole moment of a single water molecule in water hexamer was predicted to be

2.7D.  Although the dipole moment fluctuates a bit as the cluster size grows from 6-20,

MP2/aug-cc-pVTZ predicts a Boltzmann averaged dipole moment of 2.90 D for 20 water

molecules, close to the experimental value for a water molecule in the bulk.

Table 3.2.  Boltzmann averaged (H2O)n MP2 dipole moments for n=6-20.

n H2O  DH (d,p) Avg. Dipole aug-cc-pVDZ Avg. Dipole aug-cc-pVTZ Avg. Dipole

6 2.85 2.67 2.54

8 2.91 2.72 2.64

10 3.00 2.87 2.74

12 2.92 2.76 2.70

14 2.93 2.77 2.67

16 2.98 2.82 2.74

18 2.96 2.77 2.67

20 3.11 2.91 2.90
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C.  Structures containing 26, 32, 41 and 50 water molecules

Monte Carlo simulations were next performed on larger clusters, in order to examine

convergence of the predicted dipole moment.  As the cluster size increases, the extent of

required sampling increases, since the number of possible configurations increases.  As

before, one water molecule was treated with MP2, while all the other waters are represented

by EFP1/DFT.

 
     26 H2O  3.31 D  [3.07 D]                              3.31 D    [3.08D]                          3.27 D   [3.02 D]

                   0.0                                                             0.1                                            3.5    kcal/mol

       
      32 H2O  3.44 D   [3.24 D]                          3.03 D    [2.65 D]                          3.29 D     [3.03 D]

                          0.0                                                     0.2                                           0.6    kcal/mol

Figure 3.4.  A sample of minima for 26 and 32 water molecules.  The left-most structure is the global minimum

structure while the two structures to the right of it are higher-energy structures.  The oxygen atom of the ab

initio water molecule is shaded and larger in size to illustrate where the ab initio water molecule is located

within the cluster.  Relative energies (in kcal/mol) and DH (d,p) (aug-cc-pVDZ) [aug-cc-pVTZ] dipoles (in

Debye) are given underneath each structure.

Initially, the MP2/DH(d,p) water molecule was placed as close as possible to the

center of the water cluster.  Of course, no constraints were placed on the Monte Carlo

simulations, but experience suggests that dramatic changes in the structure do not occur.
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Once a sample of structures was found for each cluster size, the results were Boltzmann

averaged.  Relative energies and sample structures are shown Figures 3.4 and 3.5.  The affect

of moving the MP2 water molecule to other regions of the cluster is discussed in the next

subsection.

  
   41 H2O   3.53 D  [2.91 D]                      3.54 D     [3.32 D]                               3.44 D   [2.99 D]

                 0.0                                                        4.1                                              4.2      kcal/mol

     
  50 H2O   3.4 D  [3.14 D]                            3.44 D    [3.22 D]                              3.17 D   [2.84 D]

                      0.0                                                      0.3                                            5.2       kcal/mol

Figure 3.5.  Sample minima for n=41, 50 H2O water molecules.  The same format and labeling used in Figure 4

is used here.

The most energetically favorable structures for 26 water molecules are similar to

those found for n=20; that is two planar “sheets” of molecules stacked on top of each other

(see structure 26B in Figure 3.6).  For larger clusters (32, 41, and 50), the lowest energy

structures are spherical as expected for bulk water, rather than the higher energy stacked

planar sheets (structures 32A, 41A and 50A in Figure 3.6).  The structures which have one

water molecule solvated by other water molecules evenly distributed throughout its three

dimensional surroundings are considered to be completely solvated.  At n=32, the completely
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solvated structure (32A) is lower in energy than the sheet structure (32B) and this trend is

followed for n=41 and 50.  The energy difference between the approximately spherical

structure (global minimum) and the planar sheet structure increases from 14.3 to 18.1 to 29.1

kcal/mol as n increases from 32 to 41 to 50.

   
                            26A                                                                       26B

                             0.0                                                                 -1.3       kcal/mol

                      
                     32A                                                                               32B

                     0.0                                                                          14.3      kcal/mol

                           
                   41A                                                                                  41B

                    0.0                                                                             18.1      kcal/mol

              

                  50A                                                                                    50B

     0.0                                                                              29.1     kcal/mol

Figure 3.6.  Symmetric structures formed from minima for n=26,32,41 and 50.  These structures involve

parallel planes of 4 water molecules hydrogen bonded to each other.  The 4 water molecules in each parallel

plane hydrogen bond to each either and form the shape of a square.  Relative energies are compared to the

lowest energy structure which is comprised of one central water molecule completely solvated and surrounded

by the rest of the cluster.
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The Boltzmann averaged dipole moments of an MP2 water molecule placed

approximately at the center of 26, 32, 41 and 50 water molecule clusters are given in Table

3.3.  The Boltzmann averaged dipole moments for the four values of n are similar to each

other and slightly fluctuate within the experimental error bars given by Badyal et al3 (2.9 ±

0.6).  As observed for the smaller water clusters, MP2/aug-cc-pVTZ predicts a smaller dipole

moment for each cluster size than MP2/DH(d,p) and using the larger basis set yields dipole

moments that are closer to the experimental value.

Table 3.3.  Boltzmann averaged dipole moments of all structures found for 32, 41 and 50 water molecules,

using the DH(d,p) and aug-cc-pVTZ basis sets, and placing the MP2 water at the approximate center of the

cluster.

Cluster size DH (d,p) Avg. Dipole aug-cc-pVTZ Avg. Dipole

26 3.3 3.1

32 3.3 2.9

41 3.5 3.3

50 3.4 3.2

D.  Origin of the dipole moment

In order to sample the dipole moment of a single water molecule in various hydrogen

bonding environments throughout water clusters containing n=32 and 41 molecules, an

MP2/aug-cc-pVTZ calculation was done at every EFP position in the global minimum

structure for each value of n.  The location of the MP2 water molecule was moved about the

cluster until all positions had been sampled, with the n-1 waters represented by EFPs. The

Boltzmann averaged dipole moments are presented in Table 3.4.  The range presented by the

minimum and maximum dipole moments (~0.7D) is similar to the experimental uncertainty

(± 0.6D)3.
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Table 3.4.  Boltzmann averaged MP2/aug-cc-pVTZ dipole moment (in Debye) for (H2O)32 and (H2O)41.  The

largest dipole moment found in the cluster is given in the column Max. Value while the smallest value is listed

in the Min. Value column.

Cluster Size Avg. Dipole Max. Value Min. Value

32 3.1 3.43 2.67

41 3.3 3.37 2.72

Total Number of Hydrogen Bonds vs. Dipole Moment
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Figure 3.7.  The dipole moment of each water molecule was calculated in the global minimum structure for

n=32.  The number of hydrogen bonds for each molecule is plotted against the dipole moment for the molecule.

In general, increasing the number of hydrogen bonds increases the dipole moment of the molecule.

Figure 3.7 presents a graph that depicts the dependence of the computed dipole

moment on the number of hydrogen bonds formed by the MP2 water as it is moved to

various positions in the global minimum 32-water cluster.  In general, the dipole moment
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increases as the number of hydrogen bonds increases up to 4 (in which case the water

molecule donates 2 and accepts 2 hydrogen bonds).  This suggests that the dipole moment of

a water molecule that is internal in a water cluster will tend to be larger than the dipole

moments of a water molecule that resides at or near the surface and forms fewer hydrogen

bonds.

Additional analysis shows that hydrogen bonds in which a lone pair on the MP2 water

interacts with EFP OH bonds play the most significant role in dipole moment enhancement.

This will be referred to in this discussion as a hydrogen bond accepting arrangement, as

opposed to hydrogen bond donating in which the MP2 OH bond is interacting with lone pairs

on EFP waters. Figure 3.8 plots the number of hydrogen bond donors against the predicted

dipole moment of each water molecule within the global minimum structure for n=32. It is

clear that the dipole moment is enhanced as the number of donating OH hydrogen bonds on

the MP2 water increases from 1 to 2.  However, the dipole moment is not significantly

enhanced when the number of donating hydrogen bonds increases from 0 to 1.  For the

ranges of dipole moments for which the number of hydrogen bond donors is 1 or 2, the lower

half of each range has one hydrogen bond acceptor, while the upper half corresponds to

structures in which the MP2 water lone pairs accept two hydrogen bonds.  Also, note that in

the line in Figure 3.8 that corresponds to zero MP2 OH hydrogen bond donors, there are two

cases with greatly enhanced dipole moments, ~2.85D and 2.95D.  In these cases, the

participation of the MP2 water in hydrogen bonding comes from two hydrogen bond

acceptors by the two lone pairs on the MP2 water. This indicates that the lone pair orbitals on

the MP2 water, which participate in accepting hydrogen bonds, play an important role in the

dipole moment enhancement.
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Number of Donating Hydrogen Bonds vs. Dipole Moment
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Figure 3.8.  The number of donating hydrogen bonds of each molecule in the (H2O)32 global minimum is

plotted against that molecule’s predicted dipole moment.  Dipole moment enhancement is very large for the two

cases where only accepting hydrogen bonds are present.

Localized molecular orbitals (LMOs) provide an opportunity to understand the origin

of the dipole moment enhancement in a chemically intuitive manner. As noted by Pople80,81, a

bond orbital resembles a quadrupole80, with positive centers (nuclei) at each end and a

negative charge distribution (electrons) in between.  Lone pairs, on the other hand, resemble

dipoles, with a positive nucleus at one end and electron density at the other, giving rise to a

charge separation.  This suggests that the water dipole moment will largely arise from the

oxygen lone pairs.  This notion can be examined by decomposing the dipole moment of a

water molecule into a vector sum of the dipole moments that arise from its bond and lone

pair orbitals.  Such an analysis is facilitated by using charge neutral localized charge

distributions (LCDs)73,74.  Since LMOs and LCDs are only available at the Hartree Fock (HF)
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level of theory, dipole moments in this section are reported at this level of theory using the

aug-cc-pVTZ basis set.  Of course, the HF water dipole moment calculated with a given

atomic basis is larger than that predicted by MP2 with the same basis set, and therefore larger

than the experimental value as well. As will be seen below, the HF dipole moment for a

water molecule in an EFP cluster is also higher than the corresponding MP2 dipole moment.

However, the trends exhibited by the HF dipole moments as the number of EFP water

molecules in the cluster increases is the same as those for an MP2 water molecule. So, the

following analysis is reasonable.   Though this scheme ultimately divides electron density

into LMOs, this is not done until the final step.

Of course, any analysis in which an observable (e.g., water dipole moment) is divided

into non-observable components (e.g., OH bond and lone pair dipole moments) is inherently

arbitrary and cannot be directly verified experimentally.  Nonetheless, such interpretations in

terms of commonly used chemical concepts can be very useful. The OH and lone pair LMO

orbitals in an isolated (HF) water molecule are modified when this HF water molecule is

placed in a cluster of EFP waters, because the orthogonal linear combinations of atomic

orbitals in the HF water are modified by the field of the EFP waters via the polarizability

term that is iterated to self-consistency within the HF interations.

Now, consider the water monomer and the global minimum for the 32-water cluster,

examined in terms of LCDs in Table 3.5.   As noted above, although the HF dipole moments

in Table 3.5 are larger than the corresponding MP2 dipole moments, the trend and the

magnitude of the increase in dipole moment is captured by the HF level of theory. As

expected based on the previous discussion, the largest contribution to the magnitude of the

water monomer dipole moment comes from the two lone pair LMOs (see Figure 3.9).  There
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is only a small contribution from the two O-H bond orbitals and virtually no contribution

from the oxygen inner shell LMO. Since the net dipole moment is the vector sum of the five

contributions (two lone pairs, two OH bond pairs, and the inner shell), and since the

magnitudes of the lone pair dipole moments are greater than the net molecular dipole

moment, it is clear from the top half of Table 3.5 that the OH dipole moments are oriented in

the opposite direction from the lone pair dipole moments and therefore diminish the net

dipole moment.  Since the magnitudes of the OH bond dipole moments are rather smaller

than the lone pair dipole moments, the net water monomer dipole moment is dominated by

the lone pair contributions. Nonetheless, the OH bond dipole vectors do play an important

quantitative role in determining the overall dipole moment. The same is true for the HF water

molecule in a 32-water cluster discussed in the following paragraphs.

Table 3.5.  Dipole moments for each LMO for the monomer and for the center-most molecule of the global

minimum for n=32.  The first column numbers each LMO.  The second column describes the type of LMO.

The next column gives (in Debye) dipole vector magnitudes and the molecular dipole moment. The angles

between lone pair dipole vectors are given in the last column.

monomer

orbital no. orbital type dipole Lone pair angle

1 core 0

2 lp 2.88 124.6

3 lp 2.88

4 bonded 0.39

5 bonded 0.39

1.99

32 GM

orbital no. orbital type dipole Lone pair angle

1 core 0

2 lp 3.07 116.8

3 lp 3.12

4 bonded 0.16

5 bonded 0.08

3.3
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Now, consider the analogous analysis for the “central” (most fully solvated) water in

the global minimum for (H2O)32.  The ab initio water is again represented by HF/aug-cc-

pVTZ, while the remaining water molecules are DFT-based EFPs.

Figure 3.9.  Illustrations of localized molecular orbitals and the dipole moments along each orbital.  The two

green arrows illustrate a dipole moment vector lying along a oxygen-hydrogen bond orbital and along an

oxygen lone pair.

As for the water monomer, the dipole moment for the central water molecule in

(H2O)32 is dominated by the contributions from the lone pair LMOs (see Table 3.5).

Importantly, the magnitude of the lone pair dipole moments do not change significantly

relative to those of the monomer, nor do those of the bonding LMOs.  So, the dipole moment

enhancement does not originate from any significant change of the magnitude of the LMO

dipole moments. Rather, the dipole moment enhancement is driven by changes in the
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orientation of the lone pair dipole moments upon solvation.  As shown in Table 3.5, the

angle between these lone pair LMO vectors decreases from 124.6º in the monomer to ~117º

when solvated by 31 EFPs. This decrease in the angle between the lone pair dipole vectors,

expected in a highly hydrogen bonded environment encountered in liquid or solid water,

results in a greater resultant net dipole moment. Once again, the net molecular dipole

moment is smaller in magnitude than the lone pair dipole moments because of the opposing

OH bond pair dipole moments. Even though the OH dipole moments are much smaller in

magnitude, they again have a non-trivial attenuating affect. This behavior is also apparent for

n=41 and 50, as may be seen in Table 3.6.  The observed decrease in the angle between the

lone pair LMOs arises from the formation of the hydrogen bonds to these lone pairs, thereby

increasing the bonding character of these orbitals.

Table 3.6.  Localized orbital dipoles and angles between the localized dipole vectors for the global minimum

structures for n=41,50.

41 GM

orbital no. orbital type Dipole Lone pair angle

1 core 0

2 lp 3.08 117.5

3 lp 3.08

4 bonded 0.16

5 bonded 0.12

3.3

50 GM

orbital no. orbital type dipole Lone pair angle

1 core 0

2 lp 3.05 117.5

3 lp 3.08

4 bonded 0.15

5 bonded 0.09

3.21
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IV.  Conclusions

The dipole moment of water has been examined starting with the monomer and

systematically adding effective fragment potential water molecules to the cluster.  Even a

small number of water molecules serves to significantly increase the dipole moment of the

quantum water. Clusters as small as 6-20 water molecules reproduce the experimentally

observed dipole moment enhancement, and clusters with 26, 32, 41 and 50 water molecules

agree with each other and with the experimentally observed dipole moment in bulk water.

Numerous papers cite polarization18,23,24,32,36,41,42,44,51 due to the hydrogen bonding in the

liquid environment as a reason for the dipole moment enhancement. Larger induced dipoles

have been proposed to be the result of larger polarization effects due to hydrogen bonding.

The present work has employed a localized charge distribution analysis to illustrate that the

dipole moment of both an isolated water molecule and a water molecule in the presence of a

cluster of EFP waters is derived primarily from the water lone pairs, attenuated by opposing

OH dipole vectors. It then follows that the enhancement of the dipole moment of a water

molecule in the presence of other water molecules arises primarily from decreases in the

angles between the lone pair dipole vectors.  This angle decrease arises in turn from the

increased participation of these lone pairs in hydrogen bonds when a water molecule is

surrounded by other waters.  This analysis is based on an interpretation of an observable (the

water dipole moment) in terms of non-observable components (OH bond and lone pair dipole

moments).  Even though such approaches are difficult to verify experimentally, such

interpretations in terms of commonly used chemical concepts can be very useful.



www.manaraa.com

65

Acknowledgements

Funding for this study was provided by the Ames Laboratory and the Department of

Energy.  The authors thank Dr. Paul Day and Dr. Heather Netzloff for providing initial

cluster geometries, and Professor Hans Stauffer for interesting and helpful discussions.

References

1.  Shostak, S. L.; Ebenstein, W. L.; Muenter, J. S.  J. Chem. Phys., 1991, 94, 5875.

2.  Shostak, S. L.; Ebenstein, W. L.; Muenter, J. S.  J. Chem. Phys., 1991, 94, 5883.

3.  Badyal, Y. S.; Saboungi, M.-L.; Price, D. L.; Shastri, S. D.; Haeffner, D. R.; Soper, A. K.

J. Chem. Phys., 2000, 112, 9206.

4.  Dyke, T. R.; Mack, K. M.; Muenter, J. S.  J. Chem. Phys., 1977, 66, 498.

5.  Clough, S. A.; Beers, Y.; Klein, G. P.; Rotham, L. S.; J. Chem. Phys., 1973,  59, 2254.

6.  Dyke, T. R.; Muenter, J. S.  J. Chem. Phys., 1973, 59, 3125.

7. Xantheas, S. S.;  Dunning, T. H. Jr.  J. Chem. Phys., 1993,  99, 8774.

8. Swanton, D. J.; Bacskay, G. B.; Hush, N. S.  J. Chem. Phys., 1986, 84, 5715.

9. Gregory, J. K.; Clary, D. C.; Liu, K.; Brown, M. G.; Saykally, R. J.  Science, 1997, 275,

814.

10. Niesar, U.; Corongiu, G.; Clementi, E.; Kneller, G. R.; Bhattacharya, D. K.  J. Phys.

Chem., 1990, 94, 7949.

11. Dang, L. X.  J. Phys. Chem. B, 1998, 102, 620.

12. Rick, S. W.; Stuart, S. J.; Berne, B. J.  J. Chem. Phys., 1994, 101, 614.

13. Stillinger, F. H.; Rahman, A.  J. Chem. Phys., 1974, 60, 1545.

14. Ahlstrom, P.; Wallqvist, A.; Engstrom, S.; Jonsson, B.  Mol. Phys., 1989, 68, 563.



www.manaraa.com

66

15. Caillol, J. M.; Levesque, D.; Weis, J. J.; Kusalik, P. G.; Patey, G. N. Mol. Phys., 1985,

55, 65.

16. Fois, E.S., Sprik, M. Parrinello, M.  Chem. Phys. Lett., 223, 1994, 411-415.

17. B. Wei, D.R. Salahub, Chem. Phys. Lett., 224, 1994, 291.

18. Tu, Y.; Laaksonen, A.  Chem. Phys. Lett., 2000, 329, 283.

19. Tu, Y.; Laaksonen, A.  J. Chem. Phys., 1999, 111, 7519.

20. Gatti, C., Silvi, B., Colonna, F.  Chem. Phys. Lett., 247, 1995, 135-141.

21. Heggie, M.I., Latham, C. D., Maynard, S.C.P., Jones, R.  Chem. Phys. Lett., 249, 1996,

485-490.

22. Reis, H., Raptis, S. G., Papadopoulos, M. G., Chem. Phys., 263, 2001, 302-316.

23. Coulson, C. A.; Eisenberg, D. Proc. Roy. Soc. London, 1966, 291, 445.

24. Chialvo, A. A.; Cummings, P.T. J. Chem. Phys., 1996, 105, 8274.

25. Bursulaya, B. D.; Jeon, J.; Zichi, D. A.; Kim, H. J. J. Chem. Phys., 1998, 108, 3286.

26. Delle Site, L.; Alavai, A.; Lynden-Bell, R. M.  Mol. Phys., 1999, 96, 1683.

27. Rick, S. W. J. Chem. Phys., 2001, 114, 2276.

28. Svishchev, I.M.; Kusalik, P.G.; Wang, J.; Boyd, R. J.  J. Chem. Phys., 1996, 105, 4742.

29. Batista, E. R.; Xantheas, S. S.; Jonsson, H.  J. Chem. Phys., 2000, 112, 3285.

30. Whalley, E.  Chem. Phys. Lett., 1978, 53, 449.

31. Liu, K.; Brown, M. G.; Saykally, R. J.   J. Chem. Phys. A, 1997, 101, 8995.

32. Dang, L. X.; Chang, T.-M.  J. Chem. Phys., 1997, 106, 8149.

33. Sprik, M.; Klein, M. L.;  J. Chem. Phys., 1988, 89, 7556.

34. Whalley, E.  Chem. Phys. Lett., 1978, 53, 449.

35. Xantheas, S. S.  J. Chem. Phys., 1995, 102, 4505.



www.manaraa.com

67

36. Batista, E. R.; Xantheas, S. S.; Jonsson, H.  J. Chem. Phys., 1998, 109, 4546.

37. Bernardo, D. N.; Ding, Y.; Krogh-Jespersen, K.; Levy, R. M.  J. Phys. Chem., 1994, 98,

4180.

38. Xantheas, S. S.;  Dunning, T. H. Jr.  J. Chem. Phys., 1993, 98, 8037.

39. Kozack, R. E.;  Jordan, P. C.  J. Chem. Phys., 1992, 92, 3120.

40. Zhu, S.-B.; Sing, S.; Robinson, G. W. J. Chem. Phys., 1991, 95, 2791.

41. Cieplak, P.; Kollman, P.; Lybrand, T.  J. Chem. Phys., 1990, 92, 6755.

42. Silvestrelli, P. L.; Parrinello, M.  Phys. Rev. Lett., 1999, 82, 3308.

43. Sprik, M.  J. Chem. Phys. 1991, 95, 6762.

44. Gubskaya, A. V.; Kusalik, P. G.  J. Chem. Phys., 2002, 117, 5290.

45. Brodholt, J.; Sampoli, M.; Vallauri, R.  Mol. Phys., 1995, 85, 81.

46. Rocha, W. R.; Coutinho, K.; de Almeida, W. B.; Canuto, S.  Chem. Phys. Lett., 2001,

335, 127.

47. Carnie, S. L.; Patey, G. N.  Mol. Phys., 1982, 47, 1129.

48. Field, M. J.  Mol. Phys., 1997, 91, 835.

49. Caldwell, J.; Dang, L. X.; Kollman, P. A.  J. Amer. Chem. Soc.,  1990, 112, 9144.

50. Batista, E. R.; Xantheas, S. S.; Jonsson, H.  J. Chem. Phys., 1999, 111, 6011.

51. Barnes, P.; Finney, J. L.; Nicholas, J. D.; Quinn, J. E.  Nature, 1979, 282, 459.

52. Kusalik, P. G.; Svishchev, I. M. Science, 1994, 265, 1219.

53. M. J. McGrath;  J. I. Siepmann;  I.-F. W. Kuo; C. J. Mundy, 2007, 10, 1411.

Laasonen, K.; Sprik, M.; Parrinello, M.; Car, R.  J. Chem. Phys., 1993, 99, 9080.

54.  Day, P. N.; Jensen, J. H.; Gordon, M. S.; Webb, S. P.; Stevens, W. J.; Krauss, M.;

Garmer, D.; Basch, H.; Cohen, D.  J. Chem. Phys. 1996, 105, 1968.



www.manaraa.com

68

55.  Gordon, M. S.; Freitag, M. A.; Bandyopadhyay, P.; Jensen, J. H.; Kairys, V.; Stevens,

W. J. J. Phys. Chem. A  2001, 105, 293.

56.  Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Matsunaga, N.;

Gordon, M. S.; Ngugen, K. A.; Su, S.; Windus, T. L.; Elbert, S. T.; Montgomery, J.; Dupuis,

M. J. Comput. Chem. 1993, 14, 1347.

57. Gordon, M.S.; Schmidt, M.W. Advances in Electronic Structure Theory: GAMESS a

Decade Later, Theory and Applications of Computational Chemistry, Dykstra, C. E.,

Frenking, G., Kim, K.S., Scuseria, G.E., Eds.; Elsevier:  Boston, 2005; Ch. 41.

58.  Adamovic, I.; Freitag, M. A.; Gordon, M. S.  J. Chem. Phys., 2003, 118, 6725.

59. Webb, S.P.; Gordon, M. S.  J. Phys. Chem. A, 1999,  103, 1265.

60. Adamovic, I.; Gordon, M. S.  J. Phys. Chem. A, 2005, 109, 1629.

61. Day, P. N.; Pachter, R.; Gordon, M. S.; Merrill, G. N.  J. Chem. Phys., 2000, 112, 2063.

62.  Pople, J. A.; Binkley, J. S.; Seeger, R.  Int. J. Quantum Chem. Sym. 1976,  10, 1.

63.  Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.

64.  Fletcher, G. D.; Schmidt, M. W.; Gordon, M. S. Adv. Chem. Phys. 1999, 110, 267.

65.  Aikens, C. M.; Webb, S. P.; Bell, R. L.; Fletcher, G. D.; Schmidt, M. W.; Gordon, M. S.

Theor. Chem. Acc., 2003, 110, 233.

66.  Dunning, T. H.; Hay, P. J.  “Methods of Electronic Structure Theory”,  Shaefer, H. F. III,

Ed. Plenum Press, N. Y. 1977, pp. 1-27.

67.  Dunning, T.H. Jr.  J. Chem. Phys. 90, 1007 (1989)

68.  Kendall, R. A.; Dunning, T. H. Jr.; Harrison, R.J.  J. Chem. Phys. 96, 6769, 1992.

69.  Metropolis, N.; Rosenbluth, A.; Tellor, A. J. Chem. Phys. 1953, 21, 1089.

70.  Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220, 671.



www.manaraa.com

69

71.  Parr, R. G.; Yang, W.  “Density Functional Theory of Atoms and Molecules”, Oxford

Scientific, 1981.

72.  Koch, W.; Holthausen, M. C.  “A Chemist’s Guide to Density Functional Theory”,

Wiley-VCH, 2001.

73.  Jensen, J. H.;  Gordon, M. S.  J. Phys. Chem., 1995, 99, 8091.

74.  Remer, L. C.; Jensen, J. H.  J. Phys. Chem., 2000, 104, 9266.

75.  Boys, S. F. “Quantum Science of Atoms, Molecules, and Solids”  P.O. Lowdin, Ed,

Academic Press, NY, 1966, 253-262.

76.  Edmiston, C.; Ruedenberg, K.  Rev. Mod. Phys., 1963, 35, 457.

77. Bader, R. F. W.; Nguyen-Dang, T. T.  Adv. Quantum Chem., 1981, 14, 63-124.

78.  Day, P. N.; Pachter, R.; Gordon, M. S.; Merrill, G. N.  J. Chem. Phys., 2000, 112, 2063.

79. Bode, B. M.; Gordon, M. S.  J. Mol. Graphics Mod., 1998, 16, 133-138.

80.  Pople, J. A.  Proc. Roy. Soc. London; 1951, A205, 155.

81.  Pople, J. A. Proc. Roy. Soc. London; 1950, A202, 323.



www.manaraa.com

70

CHAPTER 4.  AQUEOUS SOLVATION OF BIHALIDE ANIONS

A paper accepted for publication to the Journal of Physical Chemistry A

Daniel D. Kemp and Mark S. Gordon

Abstract

Second order Møller-Plesset perturbation theory (MP2) is used to perform geometry

optimizations on XHX--·(H2O)n, for X = Br, I, with n = 1-6 water molecules.  Of particular

interest is the manner in which the solvent molecules orient themselves around the solute and

which configurations are lowest in energy. Although for most values of n water molecules

may donate all of their hydrogen atoms for hydrogen bonding to the solute, this type of

structure is the lowest in energy only for n = 0-2, and only a local minimum for n = 3,4,6.

For n = 5 this type of structure is a saddle point.  Coupled cluster single point calculations at

the MP2 geometries are used to obtain accurate relative energies for all stationary points.

Introduction

Bihalide anions1-8 XHX- are linear anions with a hydrogen atom placed between two

halide atoms X.  Interest in bihalide anions stems from the fact that they form strong

intramolecular hydrogen bonds 7-10 and they are useful for studying transition states in the

corresponding neutral species via photodetachment experiments11,12. Using this experimental

technique, bihalide anions can, for example, be used to study transition states for the

prototypical H exchange reactions X + HX ! XH + H, because the minimum energy

geometries of the anions are very similar to the transition state geometries of their neutral

counterparts. So, photodetachment of an electron from the anion minimum energy geometry
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places the system close to the neutral transition state. This facilitates the study of the

vibrational spectroscopy of the neutral transition state by photodetachment spectroscopy.

If solvent molecules are included in the experiments, one can systematically

investigate the effects of increasing numbers of solvent molecules on the transition state

dynamics12,13. Both computational and experimental methods have been employed to study

the effects of solvent molecules on bihalide systems.

Recently, Neumark et al performed a combined experimental and theoretical study of

bihalide anions (BrHBr-, IHI- and BrHI-)12, in which they solvated these ions with small

numbers of solvent molecules, including water, with only one solute molecule present.  The

experimental spectrum of the ion hydrogen bonded to one water showed little change

compared to the spectrum of the bare ion.  The computations of Neumark et al12 predicted

two energy minima; one with the water molecule donating each of its hydrogen atoms to the

solute for hydrogen bonding (labeled 3 in Figure 4.1) and another with the water molecule

placed such that only one hydrogen atom will hydrogen bond to the anion (labeled 4 in

Figure 4.1).  This latter structure distorts the ion geometry by pulling one halogen atom

closer to the water molecule to maximize the hydrogen bonding interaction.  Neumark et al

concluded that the experimental spectrum of the solvated species corresponds to structure 3.

This conclusion was based on the observation that the water molecule in structure 3 donates

both of its hydrogen atoms to hydrogen bonds and that this arrangement does not

significantly alter the geometry of the solute from the unsolvated (gas phase) geometry.

Therefore, the experimental spectrum should not change significantly compared to the

spectrum of the gas phase anion, as is observed. The distorted structure 4 in Figure 4.1 is

therefore less likely to be the one observed in the experiments.
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                                  BrHBr-                                                                 IHI-

                                       1                                                                        2

                               BrHBr-(H2O)                                   BrHBr-(H2O)

                                          3                                                    4

Figure 4.1.  MP2-optimized symmetric geometries of both BrHBr- and IHI- bihalide anions 1 and 2.

Structures 3 and 4 illustrate the minima found by Newmark et al12 for n=1.

The present work describes calculations on both BrHBr-(H2O)n and IHI-(H2O)n with

n=1-6 water molecules.  Geometry optimizations have been performed to search for the

lowest energy structure for each value of n.  The motivation for this study is to determine the

preferred solvated structures for the solvated anions, in order to provide insight for the

interpretation of the spectra for these more complex species.
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Computational Methods

Second order Møller-Plesset perturbation theory (MP2)14-17 was employed in

geometry optimization searches for XHX-(H2O)n (X = Br, I and n = 1-6). The 6-31++G(d,p)18-

20 basis set was used for oxygen and hydrogen atoms in the BrHBr-(H2O)n calculations, while

the Binning-Curtiss version of this basis set21 was used for Br.  This same basis set was also

used for the oxygen and hydrogen atoms during the IHI-(H2O)n geometry optimizations,

while the Stevens, Basch, Krauss, Jasien and Cundari (SBKJC) basis set22 and the related

effective core potentials (ECPs) were used to describe the iodine atoms.  The General Atomic

and Molecular Structure System (GAMESS)23,24 was used for all calculations.  All structures

in the figures were viewed with MacMolPlt25.

When a stationary point was reached during a geometry optimization, the matrix of

energy second derivatives with respect to the atomic positions (Hessian) was calculated and

diagonalized to verify that the stationary point was indeed an energy minimum (no negative

eigenvalues) rather than a saddle point (one or more negative eigenvalues). If a negative

Hessian eigenvalue (force constant) was found, the geometry optimization was restarted at

that geometry with a tightened optimization convergence criterion of 1x10-05 hartree/bohr

(default value is 1x10-4 hartree/bohr).  This was followed by a new Hessian calculation. The

Hessian eigenvalues also provide the zero point energies that have been added to the

calculated energy differences.

To obtain accurate relative energies, single point energies were calculated, at the MP2

minimum energy geometries, with coupled-cluster theory using single, double and

perturbative triple excitations26 (CCSD(T)) for each local minimum.    For all CCSD(T)

calculations, the all-electron 6-311++G(df,p)27-29 basis set was used for the anion as well as
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for the solvent molecules.  The MP2 zero point energies were added to the CCSD(T) single

point energies to obtain 0K enthalpy differences.

Results

A.  BrHBr-(H2O)n

The geometry of the gas phase anion (n=0) is found to be linear and symmetric (D
!h)

with an H-Br distance of 1.70 Å.   This is in good agreement with Neumark et al12, and the

relatively short Br-H distances illustrate why bihalide anions are considered to be examples

of strong hydrogen bonds.

For n=1, MP2 predicts that in the lowest energy structure, both hydrogen atoms of the

water molecule participate in hydrogen bonds with the anion.  This C2V structure, Br1A in

Figure 4.2, has a 4.9 kcal/mol lower energy than Br1B (Cs symmetry), in which the solvent

water molecule acts as a hydrogen donor in just one hydrogen bond to the anion. These

predictions are in good agreement with both the previous calculations and the experimental

evidence12.  Structure Br1B in Figure 4.2 has an essentially linear arrangement of O-H-Br-H

atoms, whereas the hydrogen bond in the higher energy species in the Neumark work (4 in

Figure 4.1) is nonlinear. Despite this small difference, both studies agree upon the global

minimum structure.

Now consider structures with more than one water molecule. In the global minimum

structure for n = 2, Br2A in Fig. 2, each water molecule donates both of its hydrogen atoms

to hydrogen bonds to the anion.  If one arranges the two waters and the solute so that all

atoms lie in a common plane and both water molecules donate both of their hydrogen atoms

in hydrogen bonds to the solute (Br2C), there is an imaginary vibrational mode that leads to

structure Br2A.
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                      Br1A                                                                Br1B

              0.0              [0.0]                                                  4.7        [4.9]

               

               Br2A                                      Br2B                                              Br2C

           0.0    [0.0]                              5.9     [3.8]                                      1.3      [-0.3]

                      

                   Br3A                                     Br3B                                       Br3C

                0.0      [0.0]                          0.0     [0.9]                             1.3        [-0.7]
Figure 4.2.  The lowest energy structure and other low-lying minima for BrHBr-(H2O)n, n=1-3.  Each

row contains one more water molecule than the preceding row. The MP2 lowest energy structure

found for each value of n is given first in each row.  The two other structures in each row are

examples of higher-energy species.  Relative MP2 [CCSD(T)] energies are given in kcal/mol.  A

dotted green line denotes hydrogen bonding.

Symmetry adapted perturbation theory (SAPT) calculations30 were performed on the

solvent molecules in their Br2A and Br2C orientation, but without the anion present, in

order to analyze the interactions among the solvent molecules.   These calculations suggest
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(see Table 4.1) that although the solvent-solvent electrostatic energy is more positive (less

attractive) for the structure resulting from the re-optimization in the presence of the solute,

the solvent-solvent dispersion energy has become slightly more negative (more attractive).

This leads to the stabilization of the global minimum (Br2A) relative to the planar structure

(Br2C).  The increase in the electrostatic energy occurs because the two water molecules are

much closer to each other than they would be without the presence of the anionic solute but it

should not be a concern if the negatively charged solute is present. Note that CCSD(T) single

point energies calculated at the MP2 optimized geometries slightly favor Br2C relative to

Br2A.  It is possible that fully optimized structures at the CCSD(T) level of theory would

agree better with the SAPT predictions than do the CCSD(T) single point energies.

Table 4.1.  SAPT energies in kcal/mol for structure Br2C and Br2A in Figure 4.2, without the solute

anion present.

 Br2C Br2A

Electrostatic enegy 0.65 1.10

Exchange energy 0.00 0.01

Dispersion energy -0.01 -0.05

Induction energy -0.01 -0.02

  

Final Energy 0.63 1.07

For n = 3, a minimum energy structure, Br3B (Figure 4.2), can be found in which all

three solvent molecules orient themselves symmetrically around the solute, such that each

water donates both hydrogen atoms in hydrogen bonds to the solute anion.  However, Br3B

is not the lowest energy structure.  MP2 predicts that in the lowest energy structure, Br3A in

Figure 4.2, the third water molecule hydrogen bonds to another water molecule rather than to

the solute.  However, CCSD(T) single point energies at the MP2 geometries predict that the
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lowest energy structure is, in fact, a third structure, Br3C,  in which one water molecule

donates two hydrogen bonds to the solute and accepts one hydrogen bond from another water

molecule; the other two water molecules hydrogen bond to both the solute and to each other.

Since this CCSD(T) predicted global minimum uses all hydrogen atoms in hydrogen

bonding, it does seem reasonable that Br3C is the global minimum. Nonetheless, Br3A and

Br3B are only 0.7 kcal/mol and 1.6 kcal/mol, respectively, higher in energy than Br3C at

this level of theory.

For n = 4, a local minimum (Br4B in Figure 4.3) can be found that features four

waters placed symmetrically around the solute, with each donating two hydrogen bonds to

the solute. Not surprisingly, Br4B is not the global minimum for n = 4. The global minimum

predicted by MP2, and confirmed by CCSD(T), is labeled Br4A in Figure 4.3. In this

structure, two water molecules each donate both hydrogen atoms in hydrogen bonds to the

solute, while simultaneously accepting a hydrogen bond from (the same) third water

molecule. The fourth water donates one hydrogen bond to the water cluster and a second

hydrogen bond to one halide atom.  Structure Br4A is 8.4 kcal/mol lower in energy than

Br4B at the CCSD(T) level of theory, but only 1.7 kcal/mol lower than a third species,

Br4C, that exhibits three symmetrically displaced waters about the anion, with the fourth

water hydrogen bonding to two of the other waters. This observation suggests the existence

of steric hindrance among the water molecules that prevents too many waters from directly

interacting with the solute. Placing three water molecules in such a symmetric arrangement

(e.g., Br4C) is energetically competitive, but more than three waters does not appear to be

favorable. Note that only the three lowest-energy structures are shown in the figures. Other,

higher energy isomers, can be found, but are not shown in the figures.
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               Br4A                                     Br4B                                          Br4C

          0.0        [0.0]                           3.2       [8.4]                              1.4         [1.7]

        

                  Br5A                                       Br5B                                        Br5C

           0.0            [0.0]                         3.1           [1.4]                         3.9          [4.9]

                          

                   Br6A                                    Br6B                                       Br6C

   0.0        [0.0]                        2.1           [2.5]                       5.5          [9.3]

Figure 4.3.  Global minima and several additional minima are given for BrHBr-(H2O)n n=4-6.  The

same notation is used as that in Figure 4.2.

A symmetric structure for n=5 in which all five water molecules donate both

hydrogen atoms in hydrogen bonds to the solute cannot be found as a minimum on the
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potential energy surface.  All attempts to find such a structure result in optimizations to other,

less symmetric species.  If symmetry is used to constrain the geometry of the water

molecules so that such a structure is found, one imaginary frequency exists.  Observing the

mode of this imaginary frequency shows that following it would break the symmetry of the

structure.

Structure Br5A, the predicted global minimum shown in Figure 4.3, has three

symmetrically displaced water molecules that donate both hydrogen atoms to hydrogen

bonds to the halides of the solute (similar to Br4C), while the remaining two water molecules

donate both of their hydrogen atoms in such a way as to connect all of the solvent molecules

in a hydrogen bonding network.  This structure uses all hydrogen atoms in hydrogen

bonding.

The global minimum structure for n=6 (Br6A in Figure 4.3) arranges the solvent

molecules such that all six water molecules form a network of hydrogen bonds that resembles

a prism.  Four of the water molecules hydrogen bond to the solute and to other water

molecules, while the remaining two waters hydrogen bond exclusively with other water

molecules.  In contrast to n=5, for n = 6 a symmetric structure in which all water hydrogen

atoms donate hydrogen bonds to the solute was found without imaginary frequencies.

However, this structure is 20.0 kcal/mol higher in energy than the global minimum structure.

Structure Br6C has four waters symmetrically displaced about the solute, with the remaining

two waters forming hydrogen bonds that connect symmetrically displaced water molecules.

However, Br6C is more than 9 kcal/mol higher in energy than Br6A. This is consistent with

the notion that four or more waters arranged symmetrically about the solute causes too much

steric hindrance, thereby raising the energy relative to other isomers.
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B.  IHI-(H2O)n

The gas phase IHI- anion (n=0, 2 in Figure 4.1) is linear, with hydrogen-halide

distances of 1.9Å, compared with the BrHBr- distances of 1.7Å due to the presence of the

larger halide atoms.

For n = 1, the global minimum structure (I1A in Figure 4.4) and another higher-

energy structure (I1B) look very similar to those found for the BrHBr- solute.  In I1A, the

water molecule donates two hydrogen atoms in hydrogen bonds to the solute, in good

agreement with the structure predicted both experimentally and theoretically by Neumark et

al.  One difference between structure I1B and Br1B (Figure 4.2) is that the water molecule in

I1B seems to direct both of its hydrogen atoms towards the solute, rather than just one.

The two structures found for n=2 (Figure 4.4) closely resemble the two structures

found for BrHBr-(H2O)2.  The global minimum (I2A) is not planar and is very similar to

Br2A.  A structure can be found which is entirely planar (I2B), but this structure has one

imaginary frequency.  Tighter optimization of I2B leads to I2A.  I2A and I2B are very close

in energy at both the MP2 and CCSD(T) levels of theory; unlike BrHBr-, both levels of

theory agree that the planar structure is not the lowest energy structure. Though both levels of

theory did not agree qualitatively about the global minimum for BrHBr-(H2O)2, the relative

energies for these structures is very small and often less than 1.0 kcal/mol. This may explain

why MP2 and CCSD(T) disagree regarding the planarity of BrHBr-(H2O)2, but agree for IHI-

(H2O)2.
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                                     I1A                                                       I1B

                             0.0           [0.0]                                     3.2          [2.6]

                                  

                                    I2A                                                        I2B

                               0.0      [0.0]                                         0.1        [0.1]

                                         

                         I3A                                          I3B                                      I3C

                  0.0          [0.0]                         1.7           [7.9]                      3.7       [3.1]
Figure 4.4.  Structures and global minima for IHI-(H2O)n n=1-3.  MP2 and [CCSD(T)] relative

energies are given relative to the MP2 global minimum in kcal/mol.

For n=3, a structure in which the three water molecules are symmetrically displaced

about the solute (Figure 4.4, I3C) with all six hydrogen atoms participating as donors in
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hydrogen bonds, is a local minimum, but it is higher in energy than the global minimum by

3.1 kcal/mol at the CCSD(T) level of theory.  The n = 3 global minimum structure (I3A in

Figure 4.4) is very similar to that found for BrHBr-(H2O)3, with two waters donating

hydrogen bonds and accepting hydrogen bonds from the third water molecule.

                         

                  I4A                                           I4B                                           I4C

          0.0           [0.0]                          1.7         [1.6]                             6.2     [6.4]

                 

                    I5A                                            I5B                                     I5C

            0.0           [0.0]                            1.2       [1.6]                        2.7      [3.1]

                         

                    I6A                                       I6B                                          I6C

               0.0      [0.0]                           3.0       [1.8]                          3.0        [2.6]
Figure 4.5.  Global minima and sample structures for the IHI- solute solvated by n=4-6 water
molecules.
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Calculations on n=4 (see Figure 5) predict that a symmetric structure with all water

hydrogen atoms donated in hydrogen bonds to the solute is a local minimum (no imaginary

frequencies), but not the global minimum.  This structure (I4C) is 6.4 kcal/mol higher in

energy that the global minimum structure (I4A).   I4A is similar to the n=3 global minimum,

except that the fourth water molecule hydrogen bonds to the water cluster via one hydrogen

bond.

Just as for BrHBr-, the n=5 symmetric IHI- structure with all water molecules

donating their hydrogen atoms to the solute for hydrogen bonding, could not be located as a

local minimum without imaginary frequencies.  For IHI-, the symmetric structure has four

imaginary frequencies.  Examining these normal modes shows that they will break the

symmetry of the molecule if they are followed.  The global minimum structure (Figure 5,

I5A) favors hydrogen bonding between water molecules rather than multiple interactions

with the solute.  None of the I-H-O angles between the solute halide atoms, and the hydrogen

and oxygen atoms of a water molecule are above 150°.

The predicted global minimum for IHI-(H2O)6 (Figure 5, I6A) is very similar to that

for BrHBr-(H2O)6.  This global minimum has four water molecules donating one hydrogen

atom each to the solute for hydrogen bonding, while the other hydrogen atoms are donated to

form another hydrogen bond with a different water molecule.  The remaining two water

molecules participate in water-water hydrogen bonds.  It is possible for four water molecules

to donate all of their hydrogen atoms for hydrogen bonding with the solute, as shown by

structure I6F (Supporting Materials Figure 4.4).  However, this structure is 8.2 kcal/mol

higher in energy than the global minimum.  As for BrHBr-, a symmetric structure can be
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found as a local minimum but it is 22.1 kcal/mol higher in energy than the global minimum

structure.

Discussion

For clusters with more than two water molecules, for X = Br, I, all water molecule

hydrogen atoms may be donated to the solute for hydrogen bonding.  However, such

structures do not generally correspond to the global minimum geometries.  An analysis of

this observation can be analyzed in part by examining the Mulliken charge31-34 distribution on

both the solvated and unsolvated solute.

Table 4.2 shows the Mulliken charges for the BrHBr- solute solvated by n=0-4 water

molecules.  The structures in Table 4.2 are those in which the waters are arranged

symmetrically about the solute and in which each water donates both of its hydrogen atoms

to hydrogen bonds with the solute.   Specifically, the species in the table are structure BrHBr-

in Figure 4.1, structures Br1A, Br2A, Br3B in Figure 4.2, and structure Br4B in Figure 4.3.

As additional solvent molecules are added to the solute, the total Mulliken charge on the

solute itself does not change significantly from the gas phase value of -1.  So, the total

Mulliken charge on the solute is not the driving force for the structural arrangement of the

solvent molecules.

Table 4.2.  Mulliken charges for BrHBr- solvated by n=0-4 symmetrically arranged water molecules

which donate all hydrogen atoms to the solute for hydrogen bonding.

n Br H Total Charge

0 -0.78 +0.56 -1.00

1 -0.75 +0.53 -0.96

2 -0.72 +0.50 -0.94
3 -0.68 +0.42 -0.94

4 -0.58 +0.20 -0.97
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The individual Mulliken charges on the Br and H atoms do change significantly as the

number of water molecules present increases.  In particular, the absolute values of the

charges on both the Br and H atoms all decrease.  The Br charge increases from the

unsolvated value of –0.78 to -0.58 when n=4.  Concomitantly, the solute H atom charge

decreases from +0.56 for the unsolvated solute to +0.20 for n=4.  So, as solvent molecules

are added, the excess electron density on the Br atoms delocalizes onto the H atom. This

delocalization is likely to diminish the strong electrostatic (ion-molecule) attraction between

the solute and the solvent molecules. This undoubtedly contributes to the reluctance of the

solute to accommodate more than a small number of solvent molecules in an arrangement in

which each solvent molecule contributes both of its hydrogen atoms to hydrogen bonds. As

the electron density on the solute delocalizes, the waters also tend to form more water-water

H-bonds

Analysis of IHI- produces a similar qualitative picture, as illustrated in Table 4.3. The

structures chosen for this analysis are I1A, I2A, and I3C in Figure 4.4 and I4C in Figure 5.

The total Mulliken charge on the solute molecule remains close to the gas phase value of -1

as water molecules are added. Also, the charges on the individual I and H atoms in the solute

remain approximately at their gas phase values as the number of water molecules increases

from 0-3.  Of course, these charges are already much smaller than those in BrHBr- (cf., Table

4.2).  However, when a 4th water molecule is added, the charge on each I atom decreases to

an absolute value of ~0.45, and the charge on the H atom becomes -0.18.  So, as for BrHBr-,

there is substantial delocalization of the electron density as the number of associated solvent

molecules increases. As noted above, this electron density delocalization very likely
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contributes to the inability of the solute to accommodate more than a small number of water

molecules.

Table 4.3.  Mulliken charges for the IHI- molecule solvated by n=0-4 symmetrically arranged water

molecules.

n I H Total Charge

0 -0.50 +0.01 -1.00

1 -0.51 +0.03 -0.99
2 -0.52 +0.05 -1.00

3 -0.51 +0.02 -1.00

4 -0.45 -0.18 -1.07

Steric hindrance might also play a role in the relatively high energy of the larger

symmetric structures.  The O-O distances (in Angstroms) within the symmetric structures are

given in Table 4.4 for BrHBr-(H2O)n. The value for n=2 is smaller than that for n=3 because

of the favorable dispersion interaction discussed previously.  After n=3, the O-O distance

decreases for each successive value of n as would be expected, as the structures become more

crowded.  While the symmetric structure for n=6 is free of imaginary frequencies, it is 20

kcal/mol higher than the global minimum, and the O-O distance is only 3.39Å Angstroms.

So, in addition to the charge delocalization noted above, steric interactions also play a role in

destabilizing the symmetric structures.

Table 4.4.  O-O internuclear distances within the symmetric displaced BrHBr-(H2O)n structures are

given in Angstroms as a function of the number of water molecules, n.

n

O-O
Distance

2 4.79

3 5.39

4 4.39

5 3.73

6 3.39
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Table 4.5.  Total (TBE) and differential (DBE) binding energies for BrHBr-(H2O)n as a function of

the number of water molecules n, at the MP2 and CCSD(T) levels of theory.  Energies in kcal/mol.

n MP2 TBE MP2 DBE CCSD(T) TBE CCSD(T) DBE

1 -12.5 -12.5 -12.2 -12.2

2 -24.1 -11.6 -22.9 -10.7

3 -34.1 -10.0 -33.5 -10.6

4 -46.7 -12.7 -46.5 -13.0

5 -56.3 -9.6 -56.2 -9.7
6 -70.5 -14.2 -71.0 -14.9

Total binding energies (TBE) and differential binding energies (DBE) are given in

kcal/mol for BrHBr-(H2O)n in Table 4.5 and for IHI-(H2O)n in Table 4.6. These binding

energies were calculated by first obtaining a Boltzmann-averaged energy for each value of n.

The total binding energy is the energy difference between the bound cluster, and the bare

anion plus n individual water molecules.  The differential binding energy is the predicted

energy difference as an additional water molecule is added to the cluster.

Table 4.6.  MP2 and CCSD(T) total (TBE) and differential (DBE) binding energies for IHI-[H2O]n,

as a function of the number of waters, n.  Energies in kcal/mol.

n MP2 TBE MP2 DBE

CCSD(T)

TBE

CCSD(T)

DBE

1 -8.8 -8.8 -9.5 -9.5

2 -16.9 -8.1 -17.8 -8.3

3 -27.9 -11.1 -28.0 -10.2
4 -37.2 -9.2 -37.3 -9.3

5 -47.4 -10.3 -47.0 -9.7

6 -59.6 -12.1 -58.3 -11.4

Excellent qualitative and quantitative agreement exists between the binding energies

predicted by MP2 and CCSD(T) for XHX-(H2O)n, for both X = Br, I.  The largest difference

in the DBE between the two levels of theory is only 0.9 kcal/mol. It is clear from the

structures displayed in Figures 3 and 5 that the first solvation shell is not complete for the

n=6 global minimum structure.  Indeed, none of the low-energy n = 6 structures are fully
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solvated. It is likely that the DBEs will not settle to a uniform value until the first solvation

shell is complete.

Table 4.7.  The predicted IR frequency of the antisymmetric X-H-X stretch vibrational mode is

provided for every MP2 and CCSD(T) global minimum structure.  All frequencies are given in units

of cm-1.  When more than one antisymmetric vibrational mode was predicted, the range of values is

given along with the total number of modes in the range and the frequency of the mode which is

predicted to have the greatest intensity.  All structures are given separately in the Figures.

Structure IR Freq.

# of

frequencies

Most

Intense

  

BrHBr- 680.0 1 680.0

Br1A 686.9 1 686.9
Br2A 688.6 1 688.6

Br2C 709.3 1 709.3

Br3A 692.9 1 692.9

Br3C 1453.8 1 1453.8
Br4A 695.1, 852.2 1 695.1

Br5A 695.5, 754.0 2 754.0

Br6A 678.8-789.5 4 789.5

  

IHI- 632.8 1 632.8
I1A 649.6 1 649.6

I2A 662.9 1 662.9

I3A 661.1, 754.4 2 661.1

I4A 679.2, 824.3 2 679.2
I5A 610.4, 668.7, 699.0 3 699.0

I6A 591.1-763.1 5 656.4,685.8

Antisymmetric X-H-X stretch infrared (IR) vibrational frequencies are provided for

every global minimum structure in Table 4.7.  These frequencies were obtained from the

MP2 Hessian calculations.  For instances in which MP2 and CCSD(T) predict two different

global minimum structures, the MP2 IR frequencies are reported for both minima (Br2C and

Br3C).  The unsolvated anions only have one IR-active mode.  As the number of water

solvent molecules increases, the number of frequencies with an antisymmetric X-H-X
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vibration increase. This corresponds to a broadened experimental IR peak as the cluster size

grows.   When multiple frequencies with an antisymmetric stretch characteristic are predicted

in the Hessian, they often lie very close to each other and they are much more intense than

any of the nearby peaks in the IR spectrum. Though the quantitative frequency values may be

different experimentally, it seems that the X-H-X antisymmetric vibrational mode should be

relatively easy to identify based on the predicted frequencies from the Hessians.

When studying the vibrational mode with the most intense peak (Table 4.7), it is clear

that most of the reported BrHBr-(H2O)n frequencies lie between 680-800 cm-1 and most of the

IHI-(H2O)n frequencies lie between 630-800 cm-1.  The one exception is Br3C which has a

predicted X-H-X anti-symmetric stretch at 1453.8 cm-1.  Closely examining Br3C in Figure

4.2 reveals that the bihalide hydrogen atom lies closer to one bromine atom.  The hydrogen is

1.9 angstroms from the bromine on the left and 1.5 angstroms from the bromine on the right.

Because the hydrogen atom is not at an equal distance between the two bromine atoms, the

force constant is different and the frequency is more like a hydrogen-bromine stretch than a

Br-H-Br anti-symmetric stretch.

Conclusion

BrHBr-(H2O)n and IHI-(H2O)n geometries were optimized for n=1-6 at the MP2 level

of theory.  The water molecules prefer to donate all of their hydrogen atoms to the solute for

n=1,2.  However, although this type of structure is a local minimum for n=3,4 it is not a

global minimum.  For n=5,6 this type of structure is not a minimum on the potential energy

surface.  This is due in part to charge delocalization in the solute anion and in part to the

increasing steric interactions among the water molecules with increasing n.
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Abstract

Structural properties of large NO3
–·(H2O)n (n = 15–500) clusters are studied by Monte Carlo

simulations using Effective Fragment Potentials (EFPs), and by classical molecular dynamics

simulations using a polarizable empirical force field.  The simulation results are analyzed

with a focus on the description of hydrogen-bonding and solvation in the clusters.  In

addition, a comparison between the electronic structure-based EFP and the classical force

field description of the 32 water cluster system is presented.  The EFP simulations, which

focused on the cases of n = 15 and 32, show an internal, fully solvated structure and a

“surface adsorbed” structure for the 32-water cluster at 300 K, with the latter configuration
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being more probable.  The internal solvated structure and the “surface adsorbed” structure

differ considerably in their hydrogen-bonding coordination numbers.  The force field-based

simulations agree qualitatively with these results, and the local geometry of NO3
– and

solvation at the surface-adsorbed site in the force field simulations are similar to those

predicted using EFPs. Differences and similarities between the description of hydrogen-

bonding of the anion in the two approaches are discussed.  Extensive classical force field-

based simulations at 250 K predict that long timescale stability of “internal” NO3
–, which is

characteristic of extended bulk aqueous interfaces, emerges only for n > 300. Møller-Plesset

perturbation theory is used to test the geometries of selected surface and interior anions for

n=32 and the results are compared to the EFP and MD simulations. Quantitatively, all

approaches agree that surface structures are preferred over the interior structures for clusters

of this size.  The relatively large aqueous clusters of NO3
– studied here are of comparable size

to clusters that lead to new particle formation in air.  Nitrate ions on the surface of such

clusters may have significantly different photochemistry than the internal species.  The

possible implications of surface-adsorbed nitrate ions for atmospheric chemistry are

discussed.

I. Introduction

The nitrate anion (NO3
–) is one of the most abundant ions in the atmosphere.1,2 It

plays an important role in many atmospheric chemical1,2 and biological3,4 processes.  The

chemistry and the photochemistry of NO3
– ions in aqueous aerosols may strongly depend on

whether the ions are solvated in the bulk or present at the surface of the aerosol.5 Therefore,
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understanding the solvation of NO3
– and its propensity for the surface of aqueous solutions is

important.

The behavior of nitrate ions at the air-solution interface of aqueous nitrate solutions

has been the subject of a growing number of experimental investigations in recent years.

Nonlinear vibrational spectroscopic measurements that probe environments lacking inversion

symmetry, specifically, vibrational sum frequency generation (SFG) and second harmonic

generation (SHG), have been used to study the interfaces of aqueous nitrate solutions.  SFG

spectra covering the range of frequencies of water O–H stretching vibrations have provided

indirect evidence for the presence of nitrate ions in the vicinity of the air-water interface

signaled by their perturbation of the water hydrogen bonding network.6,7  The presence of

nitrate in the interfacial region has also been demonstrated by direct SFG detection of the

nitrate symmetric stretching mode.8  However, SFG measurements are not capable of

determining the precise location and details of the solvation of the ions, nor their relative

concentration in the interfacial region vs. the bulk.  UV-SHG experiments have also been

employed to directly probe the presence of nitrate at the air-water interface.9  The

concentration dependence of the SHG intensity could be fit to a Langmuir adsorption

isotherm, consistent with nitrate adsorption at the interface, but the free energy of adsorption

could not be determined precisely from the fits.  Thus, as in the case of the SFG data, the

SHG data do not permit the amount of nitrate in the interfacial region to be accurately

quantified.  Electrospray ionization mass spectrometry measurements suggest that the affinity

of nitrate for the air-water interface is slightly greater than that of bromide,10 an ion that is

generally considered to adsorb to the interface.11  In contrast, analysis of surface tension data

based on a thermodynamic partitioning model has led to the conclusion that the concentration
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of nitrate at the air-water interface is the same as in the bulk.12  Very recently, depth-resolved

x-ray photoemission measurements were used to directly measure the concentration profile

of nitrate ions at the air-solution interface.13  These experiments clearly showed that nitrate is

present in the interfacial region, but at a substantially lower concentration than in the bulk.

The first molecular dynamics (MD) simulation study of the behavior of nitrate at the

air-solution interface suggested that nitrate has a propensity to adsorb to the air-water

interface.13,14 This conclusion was reached based on the observation that the nitrate ion

remained at the interface for several hundred ps when a polarizable force field was

employed.  The force field results were corroborated by a density functional theory (DFT)

MD simulation of a NO3
–·(H2O)10 cluster, in which the forces were obtained from the

electronic structure computed via DFT with the BLYP exchange-correlation functional, that

demonstrated the preference of the ion for the surface of the cluster.14  Although the cluster

results have not yet been called into question, subsequent more extensive force field-based

studies of nitrate at extended bulk solution-air interfaces have consistently predicted that,

while the nitrate ion is capable of visiting the interface, its concentration in the interfacial

region is substantially depleted relative to the bulk solution,15-17 in contrast to the original

suggestion of a pronounced interfacial propensity.13,14  A careful comparison with x-ray

photoemission data has demonstrated semi-quantitative agreement between the depth-

dependence of the nitrate concentration extracted from the experimental data and predicted

by one of the more recent MD simulations employing a polarizable force field.13

A full understanding of the role of the interfacial environment in determining the

reactivity of nitrate ions at aqueous surfaces in the atmosphere requires a more detailed

description of the microsolvation of nitrate in interfacial settings over a range of atmospheric
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conditions.  Electronic structure calculations and spectroscopic measurements have provided

insight into the solvation of nitrate in small clusters containing up to six water molecules at

low temperatures,18-22 but data on larger clusters at ambient temperatures is lacking.

We focus here on the solvation of NO3
– in relatively large water clusters, which are of

interest for several reasons.  First, while clusters are small compared to bulk systems, they

may nevertheless provide insights into the behavior in the condensed phase and at extended

bulk interfaces.  Second, small to modest-sized clusters can be modeled realistically by more

rigorous methods, and such systems can therefore serve as a proving ground for tools used

for larger clusters and extended interfacial systems.  Finally, the investigation of the

dependence of various properties on cluster size may provide new fundamental insights into

the bulk vs. interfacial solvation of nitrate ions.

One of the main challenges in theoretical investigations of ion solvation is the

development of an accurate description of ion-solvent interactions.  One can gain insight into

ion-water interactions at the molecular level by using a quantum mechanical description of

the forces.  Molecular anions have complex charge distributions, so that electronic structure-

based methods have unique advantages. However, an obvious disadvantage is the prohibitive

increase in cost as the cluster size grows.  Thus, empirical force fields are presently the most

practical tool available for the theoretical investigation of the solvation of anions in very

large water clusters and in bulk solution.  Comparison of the two approaches for clusters of

intermediate sizes is therefore of considerable value for establishing the accuracy of force

fields.

In this paper we report a theoretical study of the solvation of NO3
– in water clusters,

NO3
–·(H2O)n, with n = 32–500, that employed three approaches.  The first is Monte Carlo
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(MC) simulations based on an electronic structure-based potential called the “Effective

Fragment Potential” (EFP).  The EFP method is feasible for cluster sizes of up to 32 or more

water molecules, and can be used to test the empirical force field. The second is classical MD

simulations based on an empirical polarizable force field.  The third method is second order

Møller-Plesset perturbation theory (MP2), which is used to optimize selected structures for

n=32. The empirical force field is computationally applicable to larger clusters and bulk

solutions.  Thus, we present EFP results for n = 15 and n = 32, and use n = 32 for detailed

comparisons with the force field-based simulations and MP2.  We also investigate the

dependence of the surface propensity of NO3
– on cluster size using force field-based

simulations of clusters with n = 100, 300, and 500 water molecules.  Both the EFP and force

field-based simulations predict that NO3
– strongly prefers to reside on the surface of the

cluster with n = 32, while MP2 predicts that surface structures are slightly preferred over the

interior structures.  The force field-based simulations predict that the surface propensity

persists in clusters as large as n = 300, and that the preference of NO3
– for the interior that has

been demonstrated by both simulation and experimental investigations of bulk solutions13,15-17

does not set in until n > 300 water molecules.  The implications of the surface preference for

NO3
– in large clusters (n = 15–300) for atmospheric chemistry.

II. Methods

II. A. Effective Fragment Potential (EFP) calculations
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The Effective Fragment Potential (EFP) method, developed by Gordon and

coworkers,23,24 is a semi-classical model potential, derived from electronic structure theory,

for computing intermolecular interactions between solutes and solvents or between solvent

molecules.  Central to the EFP is the evaluation of the charge distribution within the

molecules based on first principles algorithms.  The EFP approach has been successfully

applied to the solvation of atomic anions in water clusters (X–·(H2O)n).
25,26  This paper

presents the first application of the EFP approach to a solvated molecular anion, NO3
–.

Global minimum energy structure searches were performed using the MP2 level of

theory and the DH(d,p)27 basis set for the NO3
– anion.  All of the water molecules were

treated within the EFP framework.  The general atomic and molecular electronic structure

system GAMESS28 was used for all of the EFP-based calculations.

Searches for the minimum energy structures, including the global minimum on the NO3
–

·(H2O)32 potential energy surfaces, used a MC29/simulated annealing (SA)30 code. The

utilization of MC with EFP and the use of EFP itself have several advantages over electronic-

structure methods and force field potentials.  First, the EFP method can be used directly with

MC simulations, and thus is applicable to sampling an equilibrium thermodynamic

distribution of structures, while with ab initio electronic structure methods, only optimized

structures can usually be obtained, due to the limitations of computer resources.  For the

calculation of room-temperature properties of floppy systems such as ion-water clusters,

thermal fluctuations are clearly essential.  Second, the energies of the equilibrium structures

have been corrected with zero-point-energies, while in classical MD simulations, quantum

effects are not taken into account.  Finally, the EFP is not subject to the potential fitting and
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parameterization errors that could affect the accuracy of empirical force field-based

descriptions of NO3
–/water interactions.

MC/SA was used to initiate structure searches at 600 K and then to slowly cool the systems

to 300 K.  Geometry optimizations (at 0 K) were performed after every 10 steps in the MC

simulations.  All of the energies reported here include zero point energy (ZPE) corrections

obtained from the Hessian, which is the matrix of the second derivative of the potential

energy with respect to the nuclear coordinates.  The total number of local minimum

structures collected from the simulations for NO3
–·(H2O)32 is 35.  All of the structures that

were sampled in the simulations were verified to be local minima by ensuring that no

negative eigenvalues (corresponding to imaginary frequencies) were present in the Hessian.

The population, Pj, of each structure j extracted from the simulations is computed

using Eq. (1):

 

Pj =
e
!"E j / kBT

e
!"E j / kBT

j

#
, (1)

! Ej is the energy difference between the jth structure and the global minimum structure of a

given cluster, T = 300 K, and kB is the Boltzmann constant.  Average energies are computed

using Eq. (2):

 

E = PjE j

j

! , (2)

in which the sum runs over the structures in a given class (e.g., structures with NO3
– on the

surface or in the interior of the cluster).
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II. B. Polarizable force field-based MD simulations

Simulations of clusters containing one NO3
– ion and a given number of water

molecules (n = 32, 100, 300, and 500) were performed using classical molecular dynamics.

In order to obtain stable clusters, the velocities were reassigned periodically during the

simulation to provide an average temperature of 250 K.  For the cluster containing 32 waters

the velocities were reassigned every 100 time steps, while for the larger clusters the

velocities were reassigned every 1000 time steps.  All simulations were carried out using the

Amber 8 suite of programs.31 The internal degrees of freedom of the water molecules were

constrained using the SHAKE algorithm.32 All of the simulations consisted of 500 ps

equilibration followed by 3 ns production runs using a time step of 1 fs.  For clusters

containing up to 300 waters, all pair interactions were calculated explicitly (i.e., the

nonbonded interactions were not truncated).  For the 500-water cluster, periodic boundary

conditions were employed and the electrostatic interactions were calculated using the Particle

Mesh Ewald method33,34 with a neutralizing background and a real space cutoff of 12 Å.  The

500-water cluster was placed in a large cubic box with an edge length of 150 Å to

approximate an isolated cluster.

A polarizable force field was used for both water and NO3
–.  Water molecules were

modeled using the POL3 water model.35 The force field for nitrate, adapted from the model

used by Salvador and coworkers,14 represents the polarizability by equal contributions from

each NO3
- oxygen (! = 1.49 Å3). The nitrate ion geometry is fixed using artificial O-O bonds

in the simulations.  The nitrate force field parameters used in the present study are

summarized in Table 5.1. In order to avoid the polarization catastrophe,36 induced dipoles
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have been calculated using a method developed previously with the scaling chosen to

preserve the properties of neat water.37  The force field employed here has been shown to

perform well at reproducing the thermodynamic properties and composition of bulk

interfaces of concentrated nitrate solutions.13,17

Table 5.1:  Polarizable force field parameters for NO3
– used in the present study given in the

Amber31 convention.

Atom q (e) !  (Å3) Rm (Å) !  (kcal/mol)

N (nitrate) +0.950 0.000 1.880 0.170

O (nitrate) –0.650 1.490 1.800 0.160

II. C.  Møller-Plesset perturbation theory (MP2)

To examine the structures obtained from EFP simulations, MP2 single point energies

were calculated for all n=32 structures.  Then, three structures were chosen from the EFP

simulations at n=32 for further optimization using MP2:  the global minimum structure (a

surface anion) and the two lowest-energy interior anion structures. All water molecules were

expressed with MP2, rather than EFP potentials.  The DH(d,p) basis set used to describe the

anion in the EFP simulations was used for every atom in the MP2 optimizations.

III. Results and Discussion
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III. A. Simulations with Effective Fragment Potentials: Structural Properties of

NO3
–·(H2O)32

1. Distribution of Structures with NO3
– in the Interior and on the Surface

In this section we characterize the solvation of NO3
– both in the interior and on the

surface of water clusters using configurations generated with the EFP method.  The total

number of different structures collected from the simulation of NO3
–·(H2O)32 is 35.  Among

these, NO3
– is in the interior in 6 of the configurations and on the surface in 29

configurations.  All of the structures sampled in the simulation are either local minima or the

global minimum.

Two surface structures with relatively high population probabilities were predicted,

using MP2 energies at the EFP geometries.  The global minimum, which is statistically the

most important structure found in the simulations, predicts that NO3
– will reside on the

surface of the cluster (Figure 5.1a).  The surface structure shown in Figure 5.1b is nearly

isoenergetic with the global minimum, with only ~0.01 kcal/mol separating them.  The

populations of the structures are computed using Eq. (1). These two structures (Figures 1a

and 1b) are fairly similar and the percentage of population for each of these two structures is

45%, i.e., together they represent 90% of the population.  Another surface adsorbed structure

that constitutes a smaller population (9%) is shown in Figure 5.1c.  This surface structure

differs from the other two lower energy surface structures primarily with respect to the

arrangement of the water molecules.  The energy difference between the surface structure

shown in Figure 5.1c and the global minimum surface structure is only ~1 kcal/mol.  The
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population of each of the other 26 surface structures obtained in the simulations (not shown

here) is much less than 1%, and the energy differences of these structures from the global

minimum are in the range of 3–20 kcal/mol.  The sum of the populations of all of these other

structures is only ~2%.

Figure 5.1.  EFP minimum energy structures for NO3
–·(H2O)32: (a) nitrate on the surface, global

minimum structure; (b) and (c) nitrate on the surface, local minima; (d) nitrate inside the cluster, local

minimum (e) second lowest-energy interior anion structure.  Coloring scheme used throughout the

paper: O, red; N, blue; H, light gray.

Six interior structures were obtained in the simulations, but there is only one

significant interior structure due to its greater stability than the other interior structures.  The

population of the lowest energy interior structure, shown in Figure 5.1d, is only ~ 4 ! 10-4 %.

The energy difference between this structure and the global minimum surface structure is 7

kcal/mol.  The contribution of each of the other 26 surface structures obtained in the
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simulations (not shown here) is much less than 1% and the energy difference of these

structures from the global minimum is relatively high. For example, the energy difference

between the second-lowest energy interior structure (Figure 5.1e) to the global minimum

(Figure 5.1a) is 12.8 kcal/mol.  The population ratio between surface and interior structures is

99.9996:0.0004.  Thus, it is safe to say that, in the relatively small n=32 cluster, the NO3
– is

almost always on the surface and almost never inside the cluster at the MP2/EFP1 level of

theory.

The average energies of both the surface and the interior structures of NO3
–·(H2O)32

were computed using equation (2). The difference between the average energy of the interior

structures and the average energy of the surface structures [Se Eq. (2)], 7 kcal/mol, is a

measure of the stability of the surface versus interior of NO3
– in a cluster of 32 water

molecules at the MP2/EFP level of theory.

2. Structure and Solvation of NO3
– at the Surface and in the Interior

The structural properties of both surface and interior structures are characterized

using the following four properties: the number of solvated O atoms of the NO3
–, the number

of water molecules that have hydrogen bonds with the three O atoms in NO3
–, lengths of

hydrogen bonds between NO3
– and water molecules, and the NOH angle, defined as the angle

between the N atom of NO3
– and the O–H bond of a solvating H2O molecule.

We define the number of solvated O atoms as the number of O atoms of NO3
– that are

hydrogen bonded to water molecules. The criterion used to define a hydrogen bond is

distance less than 2Å.  The number of solvated O atoms in NO3
- for the surface structures of
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NO3
–·(H2O)32 is predominately one (~43%) or two (~47%).  Only a few structures (~10%)

have all three oxygen atoms in NO3
– hydrogen bonded to water molecules. In a few cases,

one O atom in NO3
– has more than one hydrogen bond.  For the interior structures, the

number of solvated O atoms in NO3
– is either two (~55%) or three (~45%).

The coordination number is defined as the number of water molecules that hydrogen bond

with the O atoms in NO3
-.  There may be more than one water molecule that participates in

hydrogen bonding with an individual O atom in NO3
–.  The coordination numbers predicted

for the surface structures of NO3
–·(H2O)32 are in the range of 1-4, with the most probable

number of water molecules around the ion being 2–3.  For interior structures, the

coordination numbers are predominantly 3 and 4 (86% of the structures), and 5 in relatively

few cases (14% of the structures).  As expected, the coordination numbers for the interior

structures are larger than those for the surface structure.

Additional information on the solvation of nitrate in NO3
–·(H2O)32 is provided by the

distribution of the distances between each of the nitrate O atoms and the H atoms of

coordinating water molecules.  It is found that 48% of the structures with nitrate on the

surface have Onitrate–Hwater distances of 1.95–2.00 Å, 36% have distances of 1.90–1.95 Å, and

only 16% have distances of 1.85–1.90 Å.  In the interior structures, the most probable value

of the hydrogen bond distance is in the range 1.85–1.90 Å.  Thus, the distribution is shifted to

shorter distances, and this indicates that the NO3
–/water hydrogen bonding is stronger for the

interior structures.  The fact that the interior site is much higher in total energy than the

surface is most likely due to the disruption of the water-water hydrogen-bonded network in

the interior sites.  Thus, while NO3
– can make reasonably strong hydrogen bonds with water
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molecules, these do not sufficiently compensate for the disruption of water-water hydrogen

bonds, at least in small clusters.

The Nnitrate–Onitrate–Hwater (NOH) angle provides a metric for discriminating between interior

and surface solvation of NO3
–.  The preferred angle for both interior and surface structures

lies in the range 90–110°; 38% of the interior structures have an angle of 90–100°, while

46% of the surface structures have an angle of 100–110°. The interior structures have a small

population (~4%) of angles in the range of 140–150°, while none of the surface structures

have NOH angles in this range.

III. B. Cluster Size Effect in the Small Cluster Regime: NO3
–·(H2O)15 versus

NO3
–·(H2O)32

In contrast to n = 32, for which there is a stable local minimum with the nitrate ion in

the interior of the cluster (albeit with very low population), there is (based on the EFP

calculations) no stable interior site for n = 15.  There are, however, several distinct surface

structures.  The global minimum, which is statistically the most important structure found in

the simulations (58% population), is the surface adsorbed structure shown in Figure 5.2a.

The surface structure that is depicted in Figure 5.2b is a local minimum with a population of

38%, which is ~0.25 kcal/mol higher in energy than the global minimum structure.  While

the first solvation shell of 2a and 2b are very similar, the structures do differ in the

arrangements of the water molecules and the orientation of their hydrogen atoms.  The

populations of the other surface structures obtained in the simulations (not shown here) are

1% or smaller, and the energy differences of these structures from the global minimum are in

the range of 2–10 kcal/mol.
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The number of solvated nitrate O atoms for the NO3
–·(H2O)15 surface structures is

predominately one or three (33% for one solvated O atom and 33% for three solvated O

atoms). However, 18% of the structures have two nitrate O atoms hydrogen bonded to water

molecules.  As noted earlier, the number of solvated nitrate O atoms in NO3
–·(H2O)32  surface

structures is predominately one or two.  Only a few structures (~10%) have three

NO3
–oxygen atoms that are hydrogen bonded to water molecules.

Figure 5.2.  EFP minimum energy structures for NO3
–·(H2O)15: (a) nitrate on the surface, global

minimum; (b) nitrate on the surface, local minimum.

The coordination numbers predicted for the NO3
–·(H2O)15 surface structures are in the

range of 1–3, with the most probable number of water molecules around the ion being 1–2

(~84% of the population).  This can be compared to the coordination numbers predicted for

the surface structures of NO3
–·(H2O)32, which are in the range of 1–4, with the most probable

number of water molecules around the ion being 2–3.

For the NO3
–·(H2O)15 surface structures, 45% have hydrogen bond distances of 1.95-2.00 Å,

37% have hydrogen bond distances of 1.90–1.95 Å, 16% have hydrogen bond distances of

1.85–1.90 Å, and only 2% have hydrogen bond distances of 1.80–1.85 Å. This is very similar
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to that found for the cluster with 32 water molecules, indicating that the hydrogen bond

distances are not very sensitive to cluster size.

The preferred NOH angle for NO3
–·(H2O)32 surface structures lies between 90-110°,

as 48% of the surface structures have an angle of 100–110°.  For the smaller NO3
–·(H2O)15

cluster the preferred angle in surface structures also lies in the range 90–110°; 31% of the

surface structures have an angle of 100–110°.  However, 24% of the surface structures of

NO3
–·(H2O)15

 have angles lying between 120–130°.

To summarize the results of the EFP calculations reported thus far, the n = 15 and n =

32 clusters differ somewhat in their structural properties, insofar as the location of the NO3
–

ion is concerned.  The n = 15 cluster has more than one important surface-like structure.

This cluster may be more “floppy” and structureless because it is very small.  However, for n

= 32, both well-defined surface and internal structures are predicted, although the surface

location is overwhelmingly more favorable energetically, and one can describe the solvating

water molecules as forming a “droplet” shape.

III. C. Structure and Ion Solvation in NO3
–·(H2O)32: Force Field-based MD Simulations

vs. EFP

The relatively minor computational cost of the empirical force field permits extensive

sampling of the ion position and solvation in large nitrate-water clusters during a MD

simulation at 250 K.  The MD simulation of NO3
–·(H2O)32 was initiated with the ion in the

center of the cluster.  The ion rapidly went to the surface of the cluster during the

equilibration, and never returned to the interior during the 3 ns production run.  The water O

radial density profile, !(r), and the probability of finding the nitrate N atom at a distance r
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from the cluster center-of-mass, are plotted in Figure 5.3a.  The water density is consistent

with a diffuse droplet shape with an average radius of ~5 Å.  The NO3
– probability

distribution shows that the ion is exclusively located on the surface of the cluster, on average

~4.5 Å from the center-of-mass.  The representative snapshot from the MD simulation

depicted in Figure 5.3b shows that cluster shape and the ion arrangement on the cluster are

similar to the corresponding attributes of the highest probability clusters generated by the

EFP (Figure 5.1a-c).  Thus, both the force field and EFP predict that the predominant

structures of NO3
–·(H2O)32 have the nitrate ion sitting on the surface with its plane parallel to

the water-vacuum “interface”.

Figure 5.3.  (a) Water density profile (red curve) and radial probability distribution of the nitrate N

atom (blue curve) plotted vs. the distance from the center-of-mass in the force field-based MD

simulation of NO3
–·(H2O)32.  (b) Snapshot from the MD simulation of NO3

–·(H2O)32.

Although the force field and EFP agree that NO3
– predominantly resides on the

surface of NO3
–·(H2O)32, there are some noteworthy discrepancies in the details of the ion

solvation predicted by the two methods.  For example, the Onitrate–Hwater radial distribution
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functions g(r) plotted in Figure 5.4 reveal subtle differences in differences in hydrogen

bonding.  The EFP result was computed by only considering configurations in which the

NO3
– ion is on the surface of the cluster.  While the g(r) computed from the EFP-generated

configurations is noisier due to limited sampling, both the EFP and the force field results

display sharp first and relatively broad second peaks, indicating the existence of a tight first

and diffuse second solvation shell.  The positions of the first and second peaks from the force

field-based simulation, 1.8 Å and 2.1 Å, respectively, are significantly smaller than the

corresponding values from the EFP calculations, 2.1 Å and 3.4 Å, respectively.  Thus, the

force field predicts shorter nitrate-water hydrogen bonds than the EFP.

Figure 5.4.  Radial distribution functions of water H atoms around nitrate O atoms in NO3
–·(H2O)32 clusters

computed from: (a) minimum energy configurations from ELP calculations with the nitrate ion on the surface of

the cluster; (b) configurations from the force field-based MD simulation.  Due to the lack of a well-defined

reference density to normalize g(r) for these small cluster systems, the absolute scale is arbitrary and has

therefore been omitted.



www.manaraa.com

112

Figure 5.5.  The probability of observing a specific number of solvated nitrate oxygen atoms as a

function of the Onitrate-Hwater hydrogen bonding cutoff distance in NO3
–·(H2O)32 clusters.  (a) Minimum

energy configurations from EFP calculations with the nitrate ion on the surface of the cluster.  (b)

Configurations from the force field-based MD simulation.

Additional details on the nitrate-water interactions are provided by the histograms of

the number of nitrate O atoms that are solvated by water molecules, plotted in Figure 5.5 as a



www.manaraa.com

113

function of the Onitrate–Hwater cutoff distance used to define a nitrate-water hydrogen bond.

Overall, these plots are consistent with the conclusion from the g(r) data that the force field

predicts shorter hydrogen bonds than does the EFP method, in the sense that more hydrogen

bonds are counted at short cutoff distances in the force field results vs. the EFP.  In the

discussion of liquid structure, the position of the first minimum in g(r) is used to define the

spatial extent of the first solvation shell.  If the hydrogen bond cutoff is defined by the

position of the first minimum in the Onitrate–Hwater g(r), which occurs at 2.3–2.4 Å, then both

the EFP and force field-based simulations consistently predict that all three nitrate O atoms

are solvated essentially all the time when the ion is on the surface of the cluster.

Overall, the preferred nitrate ion location and solvation in NO3
–·(H2O)32 predicted by

the empirical polarizable force field used in this work compares favorably with the more

accurate, but computationally costly, electronic structure-based EFP method.  In addition to

validating the qualitative predictions of the force field, the fact that a consistent picture

emerges from both approaches testifies to the robustness of the results.

III. D. Classical Polarizable Force Field Simulations of NO3
–·(H2O)n, n = 100, 300, and

500: Evolution of Structural Properties with Cluster Size

The strong surface propensity of nitrate in modest-sized (15–32 water) clusters is

qualitatively different from the behavior of nitrate near extended interfaces of bulk aqueous

solutions.  The consensus that has emerged recently from both theoretical and experimental

studies is that nitrate approaches the air-solution interface, but does not strongly adsorb, in

concentrated bulk solutions.9,13-17 It is therefore expected that a crossover in the preference

from surface to interior solvation should be observed in clusters at some point as the cluster
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size is increased.  We have investigated the cluster size-dependence of nitrate solvation by

performing additional simulations of nitrate-water clusters with n = 100, 300, and 500 water

molecules.  These larger clusters were investigated with empirical force field-based MD

simulations only.

Figure 6. Water density profiles (red curves) and probability distributions of the nitrate N atom (blue

curves) plotted vs. the distance from the center-of-mass in the force field-based MD simulations of (a)

NO3
–·(H2O)100 cluster; (b) NO3

–·(H2O)300 cluster; (c) NO3
–·(H2O)500 cluster; (d) 864 water slab (bulk).

Water radial density profiles that define the extent of the cluster are plotted in Figure

6 along with the probability of finding the nitrate N atom at a distance r from the center-of-

mass of clusters with n = 100, 300, and 500 water molecules.  For comparison, the water

density profile and nitrate distribution obtained from a simulation of a single nitrate ion in a
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slab of 864 water molecules with periodic boundary conditions that generate an extended

bulk air-water interface are shown in Figure 6d.  The data plotted in Figure 6d confirm that

the nitrate ion prefers the interior and avoids the surface of the solution in an extended

interfacial setting.  In the 100 and 300 water clusters, the nitrate probability distribution

displays two peaks, corresponding to interior and surface locations of the ion.  In the 100

water cluster, the population at the surface is about three times greater than the interior, while

in the 300 water cluster the surface is only slightly favored over the interior.  In the 500 water

cluster, a distinct surface population is no longer discernable, and population of nitrate that is

well-solvated in the interior of the cluster clearly exceeds that near the surface of the cluster.

Snapshots depicting the preferred location of nitrate in clusters with n = 100, 300, and 500

water molecules are shown in Figure 7.

In summary, this study shows that the nitrate anion in water clusters prefers to lie on

the surface of the smaller clusters considered here (n = 15, 32, 100, and 300 water

molecules).  However, this preference decreases with an increase in the cluster size.  For a

relatively large cluster consisting of 500 water molecules, the nitrate anion no longer displays

strong surface adsorption, and it spends the majority of the time well-solvated in the interior

of the cluster.  This decrease in surface propensity is presumably driven, in part, by entropy

due to an increase in the ratio of interior sites to surface sites as the size of the cluster

increases.  There could also be an energetic component associated with the organization of

the solvent shells around the ion.
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Figure 7.  Representative snapshots from the force field-based MD simulations of (a) NO3
–·(H2O)100;

(b) NO3
–·(H2O)300; (c) NO3

–·(H2O)500.  The snapshots depict the preferred surface location of nitrate in

the 100 and 300 water clusters, and the preferred interior location in the 500 water cluster.
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Figure 8. Radial distribution functions of water O atoms around nitrate O atoms from force field-

based MD simulation configurations in which the nitrate ion is in the interior of clusters or a bulk

water slab: red, NO3
–·(H2O)300; blue, NO3

–·(H2O)500; black, 864 water slab.

Analysis of nitrate solvation using MD simulations of bulk solutions reveals a diffuse

solvent shell around nitrate, which is manifested as a broad split first peak in the Nnitrate–Owater

radial distribution function, that contains ~18 water molecules and extends to ~5 Å from the

N atom.17  A reasonable hypothesis is that the interior location of the nitrate ion is disfavored

in the smaller clusters due to the inability to support the complex solvent organization around

the ion that is preferred in bulk solution.  This hypothesis is supported by the Onitrate–Owater

radial distribution functions plotted in Figure 8, which display two prominent peaks.  Except

for a disparity in scale due to the difference in the normalization of bulk and cluster radial

distribution functions, the g(r) for nitrate on the interior of the 500 water cluster is essentially
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identical to that of nitrate in the interior of the extended slab.  Thus, the interior of the 500

water slab supports the solvation environment preferred by nitrate in dilute bulk solution.  In

contrast, the second peak in the g(r) for nitrate on the interior of the 300 water cluster is

suppressed, indicating, remarkably, that the complex solvation environment preferred by

nitrate in bulk solution cannot be fully accommodated in this large cluster.  Evidently, the

full development of the solvent shells provides additional energetic stabilization that favors

the bulk environment in the 500 water cluster and extended slab.

III. E.  Optimization of surface and interior structures by MP2 level of theory

MP2 single point energies were computed for all n=32 structures obtained from

MP2/EFP simulations and the energy differences between the structures were computed as

well. To assess the accuracy of the predicted structures obtained from the MP2/EFP

simulations, we optimized the structures with the MP2 level of theory, computed the energy

differences between the structures and compared the results to the MP2/EFP level of theory.

Since optimization with the MP2 level of theory including the Hessian calculations is

computationally expensive, optimization without Hessian calculations were performed for

only three selected structures obtained from the MP2/EFP simulations: the global minimum

(Figure 5.1a) and the two lowest-energy interior anion structures (shown in Figs. 1d and 1e).

For the (H2O)32•NO3
- cluster, both MP2/EFP and MP2 predict that the nitrate prefers to “sit”

on the surface rather than be in a bulk solvated environmental. Further, MP2/EFP predicts

that the population probabilities of the surface structures are much higher than that of the
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population probabilities of the interior structures, which are so small that they can be

neglected.

However, quantitatively, there are differences between the prediction of the MP2/EFP

method and the MP2 method in the relative energies between the structures. Table 5.2

summarizes the differences in the relative energies for the structures shown in Figure 5.1. For

example, while in the MP2/EFP simulations the energy difference between the surface

structure (global minimum) (Figure 5.1a) and the most stable interior structure (Figure 5.1d)

is 6.9 kcal/mol, after MP2 optimization, the energy difference between these two structures is

only 0.5 kcal/mol.

Table 5.2: Comparison of the relative energies of surface and interior structures for NO3
–·(H2O)32 and

of the averaged hydrogen bonding distances for the MP2/EFP1 method and MP2 level of theory.

Average hydrogen bond distances between water molecules that are connected to the nitrate ion and

other water molecules are provided.

Structure

Type

MP2/EFP1

relative

energy

MP2

single

point

relative

energy

MP2

optimized

relative

energy

MP2/EFP1

Onitrate-Hwater

distance

MP2 Onitrate-

Hwater bond

distance

MP2/EFP1

average

H-bond

distance

MP2

average

H-bond

distance

Figure

Surface 0.00 2.5 0 1.99 1.91 1.74 1.83 1a

Surface 0.01 2.5 - - - - - 1b

Surface 1.0 2.8 - - - - - 1c

Interior 6.9 0 0.5 1.86 1.83 1.78 2.21 1d

Interior 12.8 8.3 6.9 2.03 1.83 1.74 1.84 1e

These results suggest that even though the global minimum structure is a surface

anion, interior anion structures may be nearly isoenergetic with the global minimum.

Contrary to the results of many studies utilizing inexpensive empirical potentials, it is

possible that n=32 is approaching a sufficiently large enough cluster to complete the first

solvation shell around the nitrate anion and form an interior anion.  This also suggests that
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the hydrogen bonding environment of aqueous nitrate solutions may be too complex to

quantitatively study with inexpensive model potentials. Though the quantitative agreement

with MP2 is not as good as one would like, it is important to point out that the MP2/EFP

simulations did find energetically relevant interior anions.  The relatively inexpensive

MP2/EFP level of theory is able to obtain energetically relevant minima at much smaller

computational cost compared to MP2 calculations.  When the structures are obtained with

MP2/EFP and the relative energies are calculated with MP2, the most accurate relative

energies available for systems of this size can be obtained for a broad sample of structures.

Comparison of the averaged hydrogen bond distances of each of the three selected

structures obtained in MP2/EFP simulations and their optimized structures by MP2 level of

theory is summarize in Table 5.2. The average Onitrate-Hwater distance differs between the two

methods by only 0.08 Å for the lowest energy surface anion (Figure 5.1a), while the average

hydrogen bond distance differs by 0.9 Å.  The average hydrogen bonding distances of the

interior structures shown in Figures 1d and 1e differ between the two methods by 0.43 Å and

0.1 Å, respectively. Visual inspection of the structures reveals that the internal geometries of

the water molecules change more than the placement of the solvent molecules with respect to

the whole cluster.  Despite the structural changes which occur during optimization, the

relative energies of the optimized structures do not differ much from the MP2 single points.

The quantitative differences between the relative energies at the MP2/EFP and the

relative energies at the MP2 level of theory may be due to dispersion.  EFP does not include

dispersion effects while MP2 does.  The charge distribution of the nitrate anion may be

complex enough that the dispersion forces between the solute and the solvent molecules may

play a key role in determining whether or not the anion is completely solvated.  A general
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potential model, called EFP2, has been developed and includes dispersion.  However, it has

not yet been fully interfaced with ab initio calculations.  Studying the importance of

dispersion will be the focus of a future study when the EFP2/ab initio interface is complete.

These results show that solely relying on model potentials may not always provide

accurate quantitative results for every cluster size and checking the results with ab initio

methods is necessary.  This serves as a reminder of the importance of ab initio calculations

and verifying results with the highest level of theory that is computationally feasible.

IV. Atmospheric Relevance of Nitrate-Water Clusters

The formation and growth of new particles in air is important for understanding and

predicting their effects on visibility, health and climate.38-40 Elucidating the species involved

in nucleation in particular has been difficult due to the small size of the clusters and the lack

of analytical methods to probe such small amounts of material.  While it is clear that sulfuric

acid is often responsible for new particle formation, there are intriguing hints that nitrogen

may also play a role.  For example, nitrogen and organics have often both been found in sub-

10 nm-sized particles in some studies, with the organic being more closely associated with

nitrogen than with sulfate.41,42  The form of nitrogen in the particles is not well known but

appears to be at least in part, nitrate ions.

The photochemistry of nitrate ions in bulk solution is well known:43,44,45

NO3
-   +  h! "   NO2  +  O-   !!"!

OH
2 NO2   +  OH  +  OH- (3)
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!   NO2
-  +  O(3P) (4)

The overall quantum yields for production of OH and O(3P) in bulk solutions are "3  =

0.009 and  "4 = 0.001, respectively, at 305 nm.43-45 This photochemistry is important under

some conditions in the atmosphere, since nitrate is a ubiquitous component of atmospheric

aerosols, snowpacks and urban surfaces.1 For example, photochemical production of NOx  in

snowpacks has been attributed primarily to reactions 3 and 4.46-53

There is reason to believe that the photochemistry of nitrate ions may be

quantitatively, and perhaps qualitatively, different when the nitrate ion is on the surface

compared to the bulk.  At the interface, there is an incomplete solvent cage so that one would

expect less recombination of NO2 with O- and of NO with O(3P), leading to larger overall

quantum yields.54  A particularly intriguing result from the present study is the high

percentage of surface structures that have only one O atom in NO3
_ that is solvated compared

to none in the bulk, where either two or all three O atoms are solvated.  In addition, a large

percentage of the surface nitrate ions have only one or two water molecules that are hydrogen

bonded to O atoms in the nitrate, whereas none in the bulk are so under-coordinated.  This

significant difference in the interaction of nitrate ions with surrounding water molecules may

change the overall quantum yields for OH and O(3P) production, and potentially also the

relative importance of these two pathways.  For example, enhanced production of gas phase

NO2 seems likely if the nitrate photolyzes while only one of the oxygen atoms is hydrogen-

bonded to water, compared to the situation in the bulk where two or three of the nitrate

oxygen atoms are hydrogen-bonded.
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Enhanced production of the oxidants OH and O(3P) at the interface may result in

unique, and as yet unrecognized, photochemistry in the atmosphere.  For example, some

atmospherically important organic gases such as !-pinene55 and napthalene16,56-58 have

significant residence times on aqueous surfaces.  If there is generation of highly reactive OH

and O(3P)  nitrate at the interface by nitrate ion photolysis, then there is the potential for

oxidation of the organics adsorbed at the surface.  If the volatility of the organic oxidation

products is small and/or they are soluble, they will remain associated with the particle.  This

new mechanism of formation of organics in particles would lead to an association between

nitrate and organics, especially in the smallest particles where nitrate is predicted from the

current work to reside at the interface.  Clusters of 32–300, where the nitrate ion prefers the

surface, correspond to particles with diameters of the order of 1–2.5 nm in the atmosphere,

where nucleation and growth is in the early stages.  Such a mechanism may contribute to the

finding of nitrogen and organics in the smallest particles observed in Mexico City by Smith

and coworkers.41,42  In addition, the possibility should be considered that when nitrate begins

to favor the interior for larger clusters, oxidants will continue to be generated at the surface

via formation in the bulk followed by diffusion to the interface.

Finally, thin films of water exist on surfaces in the tropospheric boundary layer.59

Gaseous nitric acid undergoes rapid deposition on such surfaces,1 and is formed on them via

heterogeneous chemistry such as the hydrolysis of adsorbed NO2/N2O4.
60 Nitrate is also taken

up on urban surfaces by the deposition of nitrate-containing particles.  Such surfaces are

known to adsorb organics from air.61-63  Depending on the nature of water on these surfaces,

which is currently not well understood,64 nitrate ions may also prefer the interface in these

thin films as well, leading to enhancement of the photochemical oxidations of co-adsorbed
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organics.  Relevant to this possibility is recent work on films of organics and nitric acid by

Handely et al65 in which photochemical loss of HNO3 was observed and attributed to

photoreduction of the HNO3. Such chemistry on urban surfaces is not currently included in

urban airshed models due to the lack of data on such processes, but is clearly an area that is

potentially important for accurate modeling of urban airsheds and application to development

of effective control strategies.

V. Concluding Remarks

The structural properties of nitrate-water clusters, NO3
–·(H2O)n, were explored for a

large range of cluster sizes, from n = 15 to nanodroplets containing several hundred water

molecules.  For the smallest cluster sizes considered, with n = 15 and n = 32, the electronic

structure-based effective fragment potential method was used to compute the structural

properties.  The fact that the predictions of this method are in good qualitative agreement

with polarizable force field-based MD simulations lends strong support to the main

conclusion of this study, namely, that the nitrate ions have a strong preference for the surface

in relatively small water clusters.  Even though relatively low-energy interior anions are

predicted, MP2 optimizations confirm that the lowest energy structure for n=32 is likely to be

a surface anion. This surface preference for small clusters persists, albeit more weakly, for

clusters containing hundreds of water molecules approaching nm size droplets.  A crossover

from a preference for surface solvation to the predominance of interior solvation that is

characteristic of bulk solution interfaces is observed to occur between n = 300 and n = 500

water molecules.  The photochemistry of nitrate anions could be significantly altered by their
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presence at the surfaces of such water clusters, films and other systems compared to the bulk,

and this may play a role in new particle formation in the atmosphere as well as in the

chemistry and photochemistry of nitrate in thin water films on surfaces.  Experimental and

additional theoretical studies are underway to explore this possibility.
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CHAPTER 6. DEVELOPMENT OF AN OPEN SHELL EFFECTIVE FRAGMENT

POTENTIAL

A paper to be submitted to Theoretical Chemistry Accounts

Daniel D. Kemp and Mark S. Gordon

Abstract

The effective fragment potential method has been extended to study systems containing open

shell molecules using the restricted open-shell Hartree-Fock level of theory. The present

implementation models intermolecular interactions with electrostatics, static polarization and

exchange-repulsion.  The Coulomb and static polarization terms only required modest

modifications from the closed shell case, but the exchange repulsion term required a

derivation from first principles.  The analytic gradients for each interaction energy has also

been derived and implemented.  The relevant energy terms and several examples involving

open-shell molecules are presented.

I.  Introduction

The first implementation of the effective fragment potential (EFP) method into the

General Atomic and Molecule Electronic Strucutre System (GAMESS)1,2 was exclusively for

the water molecule (EFP1)3.  The EFP1 model was originally based upon the Hartree-Fock

(HF)3 level of theory, but a density functional theory (DFT)4 based model has also been

developed.  The EFP1 method was implemented with three different intermolecular

interaction energies:  electrostatics (Coulomb), static polarization and a combined exchange-

repulsion/charge transfer term.  The Coulomb term is based upon the Stone distributed

multipolar analysis5,6 expanded through octopoles, and the static polarization is expressed in
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terms of a tensor sum of localized molecular orbital (LMO) polarizability tensors.  The

exchange repulsion/charge transfer term was fitted to a set of calculations (at the appropriate

level of theory) on the water dimer at several orientations and intermolecular distances.

The EFP1 method has been successfully applied to various problems, ranging from

small water clusters to mixed ab inito/EFP1 studies of reaction mechanisms7, solvation

effects8 and solvated structures9,10.  Due to the success of the water-specific EFP1 method, the

EFP211 method was developed so that one could study any closed-shell solvent or solute

molecule with no empirically fitted parameters.  The original EFP2 implementation included

the same intermolecular energy interaction terms as EFP1, except that the exchange repulsion

interaction energy and analytic gradient were derived from first principle, and the

corresponding charge transfer term was only derived much later.12 The newly derived

exchange repulsion term depends upon the intermolecular overlap integrals expressed in

terms of frozen LMOs13,14.  Dispersion15 and charge transfer12 have also been derived and

coded. Damping expressions for Coulomb, polarization, and dispersion terms have also been

implemented.16

In the present work, the contributions to the open shell EFP2 method are presented in

Section II.  Several applications are presented in Section III, and conclusions are summarized

in Section IV.

II.  Interaction Energy Terms

The open shell EFP2 method is based upon spin restricted open shell Hartree-Fock

(ROHF)17 method, in which all unpaired electrons have parallel spins. In the following each

contribution to EFP2 is discussed.
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A.  Electrostatics

The Coulomb term is expanded in a distributed multipole expansion, in terms of

monopoles, dipoles, quadrupoles and octopoles at all atom centers and bond midpoints6. The

EFP-EFP Coulomb interactions are modified by a damping term as noted above. Because the

distributed multipole analysis is based upon the density matrix of the system, it is applicable

to any wavefunction, open or closed shell6, so no explicit modification of this term is

required for open shells.

B.  Polarization

The polarization interaction energy is calculated from the polarizability tensors

obtained using a finite field approach, by applying the coupled perturbed Hartree Fock

(CPHF) equations18 to each LMO.  The localized orbital polarizabilities have the following

form:

                                                      ! xy

l = lim
Fy"0

µx

l
Fy( ) # µx

l
0( )

Fy
        (1)

where ! xy

l  is the xy component of the polarizability for the lth LMO of a particular EFP and

F is the electric field. µ
x

l  is the x-component of LMO l in the presence (Fy) or absence (0) of

the field. The induced dipole field vectors are related via the polarizablity tensor:

                                                                 
 
µ
!"

i
= !

i

#F
i

!"
                                                            (2)

In Eq. (2) 
 
µ
!"

i
is the induced dipole vector, 

 
F
i

!"
is the electric field vector and 

 
!
i

! is the

polarizability tensor at point i. The polarization interaction energy between fragments is

defined as

                                                     Epol = Eint + Esol                                  (3)
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where
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 F
!"

i

efp

is the field at the polarizable point i due to the static multipoles in the other fragments,

 F
!"

i

µ j

is the field at point i due to the induced dipole j when j and i are not in the same fragment

and  F
!"

i

µ

is the field at i due to the induced dipoles in all the other fragments.

The polarizable points are taken to be the LMO centroids. This dipole-induced dipole

interaction is iterated to self-consistency within the SCF procedure. No new code is required

to extend this term to open shell species. To demonstrate this, the polarizability tensors of the

water molecule were calculated with the ROHF EFP2 code and found to be identical to those

obtained using the RHF code.

C.  Exchange Repulsion

The EFP2 exchange repulsion19 is obtained from the interactions between LMOs on

two fragments A and B. or open shells, three types of interactions must be considered: 1)

Fragments A and B are both closed shell species, 2) Fragment A is an open shell species and

B is a closed shell species, 3)  both fragments A and B are open shell species.  All of these

orbital subspaces are discussed below.

1. A and B are both closed shell EFPs

When A and B are both closed shell EFPs, the equation for the RHF-based EFP2

method applies. The exchange repulsion energy is given by Eq. (6):



www.manaraa.com

136

Eexch (V ) = !2 i | K j | i
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The four different types of integrals in Eq. (1) are defined below:
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2.  A is an open shell EFP and B is a closed shell EFP

Starting with Eq. (18) in Ref. 17:
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Since A is an open shell species, some orbitals have single occupancy. Taking this into

account leads to17 (see Eq. (6)):
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In these equations, UA is the potential due to the nuclei in fragment A and all sums are over

the LMOs on A or B.  Substituting Eqs. (7) – (15) into Eq. (2) and collecting terms based on

their power dependence on the intermolecular overlap matrix S, leads to:
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           (21)

Eq. (21) differs from the closed shell case only by the orbital indices on the sums and the

integer coefficients in front of the integrals.  The orbital summations on fragment A span

only the open-shell orbitals while the orbital sums on B span the closed shell orbitals on

fragment B.

3.  Fragment A and B are open shell species

Here, there are open shell orbitals on both A and B that must be accounted for. The

resulting exchange repulsion is given in the equation below:
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Finally, the total exchange repulsion between all pairs of fragments is obtained by

appropriately summing the contributions from Eqs. (6), (21), and (22).

In order to perform geometry optimizations, one needs to derive and implement

expressions for the analytic energy gradient. The gradient of the electrostatic and polarization

energies are the same as for closed shells, since the corresponding energy expressions are the

same.  The energy expressions for the exchange repulsion are similar to those for the closed

shell case20,21, so the corresponding gradient expressions are easily obtained and coded. All of

the changes discussed here have been incorporated into the GAMESS (General Atomic and

Molecular Electronic Structure System)1,2 electronic structure program.

III.  Examples

A glycyl radical ROHF EFP2 was generated using the 6-311++G(d,p)22,23 basis set.

The EFP glycyl radical was then solvated with a closed-shell EFP2 water molecule generated

using the same basis set.  Since the Kitaura-Morokuma24 and Reduced Variational Space

(RVS)25 analyses are apparently not available for open shell systems, comparisons are made

to fully ab initio ROHF and Z-Averaged Perturbation Theory (ZAPT)26,27 calculations.

In order to test the EFP2 method against higher level ab initio methods, the

intramolecular bond lengths and bond angles of all molecules were frozen during the ab

initio optimizations.  This provides a fair test against the EFP2 method which freezes each

internal fragment geometry at the monomer geometry.  Each molecule was allowed to freely
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move and rotate relative to the other fragments during the optimizations.  Figure 6.1

illustrates the intermolecular geometry of the glycyl-water calculations.  All calculations

were run on an IBM 1200 Mhz Power4+.

Figure 6.1.  The equilibrium geometry of the glycyl radical solvated by one water molecule is given

at the ROHF EFP2, full ROHF and ZAPT levels of theory.  Oxygen atoms are expressed in the color

red, carbon atoms are in gray, nitrogen is blue and all hydrogen atoms are white.  The R1 and R2

distances illustrate the intermolecular distances of the two hydrogen bonds.

The EFP2 geometry, binding energy predictions and CPU times are compared with

the ROHF and ZAPT levels of theory in Table 6.1. The hydrogen bond lengths between

fragments at the EFP2 level of theory are a bit longer than those predicted by ZAPT, by ~0.1-

0.2 angstroms. The EFP2 and ROHF distances are in excellent agreement with each other.
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Table 6.1.  Intermolecular distances (in Angstroms), binding energies (in kcal/mol) and CPU time

(in seconds) are given for the glycyl-water calculation at three levels of theory.  The R1 and R2

distances correspond to the illustrated distances in Figure 6.1.

The binding energies (Table 6.1) for the ab initio levels of theory were obtained by

subtracting the energies of each individual molecule from the energy of the supermolecule.

This subtracts out the internal energies of the separate molecules from the energy of the

supermolecule.  There are no internal energies within the EFP2 fragments. The EFP2 binding

energy lies between those predicted by ROHF and ZAPT, with energy differences on the

order of 1 kcal/mol or less.  Since second order perturbation theory includes dispersion

energy, while ROHF does not, it is likely that when dispersion is included in EFP2, the

agreement with ZAPT would improve. The EFP2 structure and binding energy are in

excellent agreement with ab initio calculations and are obtained at orders of magnitude less

computational cost.

Now, consider Figure 6.2, in which the weak interaction between an allyl radical and

a water molecule is illustrated.  The EFP2 R1 and R2 distances lie between those predicted

by ROHF and ZAPT (Table 6.2).  The EFP2 binding energy of –1.2 kcal/mol is in close

agreement with the ROHF value of –1.1 kcal/mol.  Whether the molecules are more strongly

bound (e.g., glycyl-water), or weakly bound (e.g., allyl-water), the ROHF EFP2 method does

reasonably well at reproducing ab inito results at a fraction of the computational cost.

Method R1 (angs) R2 (angs) B.E. kcal/mol Time (sec)

EFP2 2.15 2.09 -8.7 6

ROHF 2.17 1.98 -8.2 1097

ZAPT 2.04 1.9 -9.7 8053
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Figure 6.2.  The equilibrium geometry of one water molecule and the allyl radical is given at the

ROHF EFP2, ROHF and ZAPT levels of theory.  All atoms are colored as they were in Figure 6.1.

Table 6.2.  Intermolecular distances (in Angstroms) and binding energies (in kcal/mol) for the allyl-

water equilibrium geometries are provided for three levels of theory.  The R1 and R2 distances are

illustrated in Figure 6.2.

The open shell EFP2 method is not limited to the simple types of calculations

illustrated in Figures 1 and 2. The method presented here can also be used in combination

with the Metropolis-based Monte Carlo (MC)28 and simulated annealing29 code within

GAMESS.  These simulations can be used to search a potential energy surface to find the

structures with low-lying energies.   The MC code randomly displaces the fragments, while

Method R1 (angs) R2 (angs) B.E. kcal/mol

EFP 2.78 2.77 -1.2

ROHF 2.93 2.87 -1.1

ZAPT 2.71 2.66 -2.0
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the simulated annealing code starts the simulation at a high temperature and slowly cools it in

conjunction with geometry optimizations in order to find low-lying energy minima.  To

illustrate this for open shell species, simulations of glycyl radical with six water molecules

were performed, and the lowest energy structure is shown in Figure 6.3.  The water

molecules interact with the glycyl radical at various hydrogen bonding sites, and with each

other.  Five water molecules form a ring of hydrogen bonds with themselves and with the

solute in such a way that most of the hydrogens participate in hydrogen bonding as would be

expected.

Figure 6.3.  The equilibrium geometry of the glycyl radical solvated by six water molecules is

provided.  The same structure is viewed from two different angles.

Although the method described here allows the user to choose any multiplicity,

careful consideration must be given to the system of interest before studying it with the EFP2

method.  The EFP2 method is not suitable for studying bond-breaking, bond formation or the

sharing of open shell electrons between molecules. Such processes must be studies with

quantum mechanics.
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IV.  Conclusions

A new method to describe high spin open shell solvent and solute molecules

efficiently has been described in this work.  The ROHF-based EFP2 method is suitable for

studying intermolecular interactions involving open shell molecules and can be combined

with potentials made using the RHF-based EFP2 method.
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CHAPTER 7. DISPERSION ENERGY IN THE OPEN SHELL EFFECTIVE

FRAGMENT POTENTIAL METHOD

Daniel D. Kemp and Mark S. Gordon

Abstract

An open shell effective fragment potential (EFP) method capable of describing electrostatic,

polarization and exchange-repulsion intermolecular energy interactions has been developed

previously.  This study presents the equations for open-shell dispersion and proposes a means

to solve and approximate those equations so that the open-shell dispersion energy may also

be included in the EFP method.

I. Introduction

The original implementation of the effective fragment potential (EFP1) was

developed to model the water molecule1.  A more general potential, EFP2, that is free of

empirically fitted parameters, was subsequently developed to model any closed shell

species2.  EFP2 initially described intermolecular interactions with electrostatics, static

polarization and exchange-repulsion energies.  Subsequently, (imaginary) frequency

dependent polarization3 (dispersion) and charge transfer energies4 were implemented into

EFP2.

A basic open shell EFP2 method, including exchange repulsion, polarization, and

Coulomb terms, was recently developed to facilitate the generation of potentials for open

shell molecules5.  This method is based upon the spin-restricted open shell Hartree-Fock

(ROHF)6 method and requires that all singly occupied orbitals contain electrons with the

same spin.
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The present work presents the derivation of open shell dispersion. Following the

closed shell procedure3, the imaginary frequency-dependent polarizabilities are obtained from

the ROHF version of the time-dependent Hartree-Fock equations. The equations required for

ROHF dispersion and possible implementation procedures in the General Atomic and

Molecular Electronic Structure System (GAMESS)7,8 are discussed.

II. Theory

For the closed shell EFP2 dispersion, Adamovic and Gordon3 obtain the frequency

dependent polarizability tensors by performing a time-dependent Hartree-Fock (TDHF)

calculation.  These dynamic polarizability tensors are then used to calculate the C6 dispersion

coefficients and the dispersion energy. The procedure followed in ref. 3 is that outlined by

Amos and co-workers using TDHF9. The latter authors have also derived the analogous

equations for time-dependent density functional theory10 (TDDFT).

One can expand the total dispersion energy as a sum of terms3:

Edisp =
C
6

R
6
+
C
7

R
7
+
C
8

R
8
+ ... (1)

In Eq. (1) the Ci are expansion coefficients that are obtained from the TDHF or TDDFT

equations3,9,10, while R is the distance between interacting centers. The first term in the

expansion in Eq. (1) represents the induced dipole-induced dipole contribution to the

dispersion energy. Higher order terms in R correspond to higher order multipolar

interactions. In the EFP2 method, the dispersion coefficients are expressed in terms of the

interactions between specific localized molecular orbitals (LMO), one (i) on one fragment

(A) and the other (j) on another fragment B. This gives rise to Eq. (2), in which Rij is the

distance between the centroids of LMOs i and j.
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Edisp =
C
6

ij

Rij
6

j!B

"
i!A

"                                                                     (2)

The C6 coefficient requires the dynamic polarizability tensor, !(i"), which depends

upon imaginary frequencies.  To obtain these values, one must first solve the coupled-

perturbed Hartree-Fock (CPHF)11 equations for the response vector Z:

H
(2)
H

(1)
! (iv)

2( )Z = !H
(2)
P                                                (3)

The electronic orbital Hessian matrix is H(1), the magnetic orbital hessian matrix is H(2) and P

is the dipole moment matrix. At the TDHF level of theory,  H(1) , H(2) and P are given by:

Haibj

(1)
= !a " !i( )#ab# ij + 4 ai | bj( ) " ab | ij( ) " aj | bi( )

Haibj

(2)
= !a " !i( )#ab# ij + ab | ij( ) " aj | bi( )                              (4)

 
P
ai
= !

a
| µ! |!

i

where a and b are virtual orbitals, i and j are occupied orbitals, # is an orbital energy and 
 
µ!  is

the dipole operator.  Rearranging equation 3, gives Eq. (5) for Z:

Z = !H
(2)
P H

(2)
H

(1)
! (iv)

2( )
!1

                                            (5)

These values are obtained for isolated monomers when the potential is being formed.  Once

the response vector Z has been obtained for a given orbital pair, one can form the dynamic

polarizability tensor:

!!" (i#) = 2 $
a
| µ
^

! |$i
ai

% Z
ai

(" )
(i#) .                                     (6)

The dispersion coefficients are related to the dynamic polarizability tensors by the

following expression:
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C
6

LMO1!LMO2
= wi

2v
0

(1! ti )
2
f (vi )

i=1

12

"                                          (7)

f (vi ) = !

" LMO1

(iv) #!
" LMO2

(iv)                                                 (8)

where w
i
 is a weighting factor obtained from a 12-point Gauss-Legendre quadrature, !0 is

the static polarizability at zero frequency, and !
"

is 1/3 of the trace of the polarizability tensor

matrix3.

The overall approach to solving for the dispersion energy for an open shell molecule

is similar to that for closed shell species, but it is complicated by the fact that the ROHF

equations involve multiple Fock operators.  In the closed shell case, the orbital Hessian

matrices, Haibj

(1)  and Haibj

(2) , are obtained by adding a perturbation to the time-dependent

Schrödinger equation12 using the closed shell Fock operator which involves two orbital

subspaces- virtual and doubly occupied.   This includes perturbing the orbitals and the Fock

operator and combining all terms12.  However, there are three orbital subspaces (virtual,

singly occupied and doubly occupied) in the case of restricted open shell Hartree Fock

(ROHF).  Pople and co-workers6 devised three Fock operators for ROHF: F
DS

(doubly

occupied-singly occupied Fock operator), F
DE

(doubly occupied-virtual Fock operator) and

F
SE

(singly occupied-virtual Fock operator).  These three operators, which are defined below

in terms of molecular orbitals (see Eq. (9)), are used in the time-dependent Schrödinger

equation to obtain expressions for the orbital Hessians so that the response vector can be

obtained.  This was accomplished by adding a perturbation to the orbitals and the Fock

operators themselves, as was done in the closed-shell case3.  Once the response vector is

obtained, one can also obtain the polarizability tensors and the dispersion coefficients just as
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in the closed shell case. The three Fock operators, each of which couples a pair of subspaces

from the set (D, S, E) are6

F
DE

= h + 2J j ! K j( ) + Jl !
1

2
Kl

"
#$

%
&'

l

S

(
j

D

(

F
SE

= h + 2J j ! K j( )
j

D

( + Jl ! Kl( )
l

S

(

F
DS

= h + (2J j ! K j ) + Jl( )
l

S

(
j

D

(

(9)

In Eq. (9), H is the one-electron operator, and J and K are the Coulomb and exchange

operators, respectively. The sums run over the doubly (D) or singly (S) occupied subspaces.

These Fock operators are the starting point for deriving the open shell orbital Hessian

matrices in much the same way that the RHF operator is used in the time-dependent

Schrödinger equation to derive new expressions for the closed shell orbital Hessian

matrices.12   There are six new sets of orbital Hessian matrices, H(1) and H(2) , for each Fock

operator; each of these will be presented and discussed below.

First, consider the orbital Hessians H(1) for the FDE operator, shown in Eq. (10). There

are two expressions for H(1), since the Fock operator for this subspace is composed of the sum

of three different components (the Hamiltonian, one set of integrals over the doubly occupied

space and one over the singly-occupied space). For the closed shell (RHF) dispersion, a

virtual orbital mixes with an occupied molecular orbital in the presence of the perturbing

field.  For open shell molecules, it has been suggested13 to mix in virtual, singly occupied and

doubly occupied orbitals in the presence of the perturbation. Only two subspaces can be

mixed at a time and this increases the number of orbital Hessians for just the first Fock

operator to six.
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Hai,bj

(1)!1
= 4 ai | bj( ) ! ab | ji( ) ! aj | bi( ) + "a ! "i( )#ab# ij

H
ai,bk

(1)!2
= 2 ai | bk( ) !

1

2
ab | ki( ) !

1

2
ak | bi( ) + "

a
! "

i( )#ab# ik

Hai,lj

(1)!3
= 4 ai | lj( ) ! al | ji( ) ! aj | li( ) + "a ! "i( )#al# ij

H
ai,lk

(1)!4
= 2 ai | lk( ) !

1

2
al | ik( ) !

1

2
ak | li( ) + "

a
! "

i( )#al# ik                (10)

H
ai,gj

(1)!5
= 4 ai | gj( ) ! ag | ji( ) ! aj | gi( ) + "

a
! "

i( )#ag# ij

Hai,gk

(1)!6
= 2 ai | gk( ) !

1

2
ag | ki( ) !

1

2
ak | gi( ) + "a ! "i( )#ag# ik

In Eq. (10), a and b are virtual orbitals, i, g and j are doubly occupied orbitals and k and l are

singly occupied orbitals.  The first two orbital Hessians in Eq. (10) use virtual orbital b to

substitute for the perturbed orbital.  The next two Hessians use singly occupied orbital l and

the last two Hessians use doubly occupied orbital g.

The expression for the magnetic orbital Hessian matrix H(2) is more complicated than

that for the closed shell case and it too contains six different expressions given in Eq. (11).

Hai,bj

(2)!1
= ab | ij( ) ! aj | ib( ) + "a ! "i( )#ab# ij

H
ai,bk

(2)!2
=
1

2
ab | ik( ) !

1

2
ak | ib( ) + "

a
! "

i( )#ab# ik

Hai, jl

(2)!3
= al | ij( ) ! aj | il( ) + "a ! "i( )#al# ij

H
ai,kl

(2)!4
=
1

2
al | ik( ) ! ak | il( ) + "

a
! "

i( )#al# ik                                  (11)

H
ai,gj

(2)!5
= ag | ij( ) ! aj | ig( ) + "

a
! "

i( )#ag# ij

Hai,gk

(2)!6
=
1

2
ag | ik( ) !

1

2
ak | ig( ) + "a ! "i( )#ag# ik
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The same procedure can be used for the FSE operator. The orbital Hessian matrices are

given in Eqs. (12), (13) (m is a singly occupied orbital):

Hak ,bj

(1)
= 4 ak | bj( ) ! ab | kj( ) ! aj | kb( ) + "a ! "k( )#ab#kj

H
ak ,bl

(1)!2
= 2 ak | bl( ) ! ab | kl( ) ! al | kb( ) + "

a
! "

k( )#ab#kl

Hak ,gj

(1)!3
= 4 ak | gj( ) ! ag | kj( ) ! aj | kg( ) + "a ! "k( )#ag#kj               (12)

Hak ,gl

(1)!4
= 2(ak | gl) ! ag | kl( ) ! al | kg( ) + "a ! "k( )#ag#kl

Hak ,mj

(1)!5
= 4 ak | mj( ) ! am | kj( ) ! aj | km( ) + "a ! "k( )#am#kj

H
ak ,ml

(1)!6
= 2 ak | ml( ) ! am | kl( ) ! al | km( ) + "

a
! "

k( )#am#kl

Hak ,bj

(2)
= ab | kj( ) ! aj | kb( ) + "a ! "k( )#ab#kj

Hak ,bl

(2)!2
= ab | kl( ) ! aj | km( ) + "a ! "k( )#ab#kl

Hak ,gj

(2)!3
= ag | kj( ) ! aj | kg( ) + "a ! "k( )#ag#kj                                  (13)

Hak ,gl

(2)!4
= ag | kl( ) ! al | kg( ) + "a ! "k( )#ag#kl

Hak ,mj

(2)!5
= am | kj( ) ! aj | km( ) + "a ! "k( )#am#kj

H
ak ,ml

(2)!6
= am | kl( ) ! al | km( ) + "

a
! "

k( )#am#kl

Finally, the FDS operator orbital Hessian matrices are relatively simple because the form of

the Fock operator is simpler.  Electric and magnetic orbital Hessian matrices are given in

Eqs. (14), (15).
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Hki,mj

(1)!1
= 4 ki | mj( ) ! km | ij( ) ! kj | im( ) + "k ! "i( )#km# ij

H
ki,ml

(1)!2
= 2 ki | lm( ) + "

k
! "

i( )#km
#
il

Hki,gj

(1)!3
= 4 ki | gj( ) ! kg | ij( ) ! kj | ib( ) + "k ! "i( )#kg# ij                   (14)

Hki,gl

(1)!4
= 2 ki | gm( ) + "k ! "i( )#kg# il

Hki,bj

(1)!5
= 4 ki | bj( ) ! kb | ij( ) ! kj | ib( ) + "k ! "i( )#kb# ij

H
ki,bl

(1)!6
= 2 ki | lb( ) + "

k
! "

i( )#kb
#
il

Hki,mj

(2)!1
= km | ij( ) ! kj | im( ) + "k ! "i( )#km# ij

Hki,bj

(2)!2
= kb | ij( ) ! kj | ib( ) + "k ! "i( )#kg# ij                                  (15)

Hki,gj

(2)!3
= kg | ij( ) ! kj | ig( ) + "k ! "i( )#kb# ij

It is convenient to solve these orbital Hessians together. Super-matrices and super-

vectors are employed to combine each of these orbital Hessians into one large matrix.  This

can be illustrated by dividing each Fock operator in Eq. (9) into three pieces:  the one

electron Hamiltonian and the two sums over orbital subspaces.  Starting with Eq. (3), define a

super-matrix H1
’, the combination of two super-matrices:  the first super-matrix, H

11

' ,

corresponds to the orbital Hessians resulting from the integrals in Eq. (9) which result from

the sums over the doubly-occupied space j in each Fock operator (F
DE

, F
SE

 and F
DS

). The
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second super-matrix, H
12

' , corresponds to the terms from each Fock operator that involve the

second sum over the singly occupied space l.  So,

H
1

'
= H

11

'
+ H

12

'( )                                                                       (16)

where the first ‘1’ subscript on H denotes that it is the electric field orbital Hessian matrix

and the superscript prime distinguishes this matrix as a combination of many matrices, all of

which result from the sums over the doubly-occupied space j of each Fock operator (F
DE

,

F
SE

 and F
DS

).  For instance,  H
11

' is defined as

H11

'
= H

FE

(1)!1
H

SE

(1)!1
H

FS

(1)!1
H

FE

(1)!3
H

SE

(1)!3
H

FS

(1)!3
H

FE

(1)!5
H

SE

(1)!5
H

FS

(1)!5( )   (17)

Each element within H
11

' is defined in Eqs. (10), (12) and (14).  Note that the subscripts on

the orbital Hessians have changed from the orbitals involved, to the Fock operator from

which they are derived.  Only the odd-numbered terms from Eqs. (10), (12), and (14) are

included in H
11

'  because those are the terms that arise from the first sum over the doubly-

occupied subspace j in each Fock operator.  The even numbered terms are included in H
12

' ,

defined as

H
12

'
= H

FE

(1)!2
H

SE

(1)!2
H

FS

(1)!2
H

FE

(1)!4
H

SE

(1)!4
H

FS

(1)!4
H

FE

(1)!6
H

SE

(1)!6
H

FS

(1)!6( )   (18)

H
21

' and H
22

' contain all of the magnetic Hessian matrices defined in Eqs. (11), (13) and (15).

These two super-matrices are organized in a similar fashion to Eqs. (17) and (18). H
21

'

contains the odd-numbered matrices in Eqs. (11), (13) and (15) (resulting from the sum over j

from each Fock operator) while  H
22

'  contains the even-numbered matrices (resulting from

the sum over l in each Fock operator).
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The H
11

' , H
12

' , H
21

' and H
22

' super-matrices can then be used to solve for the response

vectors Z in a similar manner to that for the closed-shell case. The open-shell CPHF analog

of Eq. (3) is:

H
11

'
+ H

12

'( )Y '
+!Z

'
= 2P

!Y
'
+ H

21

'
+ H

22

'( )Z ' = 0
                                                          (19)

These equations can be rearranged to solve for Z’ by first solving for Y’:

Y ' = !"
!1
H
21

'
+ H

22

'( )Z '                                                              (20)

Eq. (20) can now be expressed with Y’ eliminated:

!"
!1
H
21

'
+ H

22

'( ) H11

'
+ H

12

'( ) +"( )Z ' = 2P                                (21)

Solving the previous equation for Z produces the response vectors that can then be used to

define the dynamic polarizability tensors and the C6 dispersion coefficients.

Proposed implementation of the method

It is easy to see that the required number of integrals for the response vector could be

very large.  If it is not necessary to substitute the perturbation of the molecular orbitals with

orbitals from all three MO subsets, one could choose to substitute them with just the virtual

orbitals and with the orbitals from only one of the occupied subspaces. For instance, a singly

occupied orbital and a virtual orbital could be mixed in to replace a perturbed doubly

occupied orbital.  Likewise, a perturbed singly occupied orbital would be replaced with

orbitals from the doubly occupied and virtual space.  This approach would be similar to the

closed shell case in which a perturbed doubly occupied orbital is replaced with orbitals from

only the virtual space and not other orbitals in the doubly occupied space, because rotations
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of orbitals within a subspace do not change the energy. This would simplify the equations

greatly and reduce the required computational time because the number of integrals would

decrease drastically. This simplification would have to be tested to assess how much error it

introduces.  Using such an approach, the Hessian matrix H
11

' can be written as

H
11

'
= H

FE

(1)!1
H

SE

(1)!1
H

FS

(1)!1
H

FE

(1)!3
H

SE

(1)!3
F
FS

(1)!3( )      (22)

while Y’ would be defined as follows:

Y
'
=

Y
FE

Y
SE

Y
FS

!

"

#
#

$

%

&
&

.                                                                              (23)

The remaining orbital Hessian matrices have a form that is similar to that of H
11

'  while Z’ and

2P’ have a form that is similar to that of Y’.  The equation required to solve for Z looks

identical to the equation defined above.  However, the super-vectors Y ' , H
11

' , H
12

'  and P

are much simpler and smaller in size.

It may be feasible to use an existing solver to obtain the response vectors (with or

without approximations).  The PGMRES subroutine within GAMESS is a solver used to

obtain the closed-shell dynamic polarizability tensors.  It was designed to solve for the

response vectors when given the orbital Hessian matrices.  In addition to being designed for

this purpose, it is also able to store strips of data on disk when the available memory is not

sufficient.  It is likely that disk access will be required for the open shell code.
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CHAPTER 8. IMPLEMENTATION OF EXCHANGE REPULSION ENERGY

BETWEEN AB INITIO AND EFFECTIVE FRAGMENT POTENTIAL MOLECULES

A paper to be submitted to Theoretical Chemistry Accounts

Daniel D. Kemp and Mark S. Gordon

Abstract

The exchange repulsion energy, Fock operator and gradient expressions for systems that

contain both effective fragment potentials and ab initio molecules have been derived, and the

former two have been implemented and tested.  Computational timings and the current

challenges facing the implementation of the gradient are discussed.

I.  Introduction

The effective fragment potential (EFP) method has been used to successfully model a

variety of intermolecular interactions, including solvent effects on ions and chemical reaction

mechanisms.  The original implementation1, called EFP1, was designed exclusively for the

water molecule.  It can be used to study a system containing only EFP1 potentials or a system

in which EFP1 water potentials solvate an ab initio solute within the General Atomic and

Molecular Electronic Structure System (GAMESS)2,3.

The second implementation4, called EFP2, is a general model potential that can be

generated for any molecular species.  An EFP2 can interact with other EFP2 molecules via

electrostatics, polarization, exchange repulsion, dispersion5 and charge transfer6.  Gradients

for each interaction type are available allowing the structural geometry to be optimized.

An EFP2 can be used in the presence of an ab initio molecule in GAMESS to

calculate energies at fixed geometries.  Single point energies are described through

electrostatics, polarization and exchange repulsion interaction energies.  Only single point
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energies may be calculated when an ab initio molecule is present, because the gradient

expression is not available for the exchange repulsion energy, and the currently implemented

EFP2-ab initio exchange repulsion energy is approximate7.

This work reviews the rigorous expressions for the exchange repulsion energy8, and

the corresponding Fock matrix8 and gradient expressions9 in Section II.  Implementations,

results and timings are presented in Section III.  Successful and unsuccessful approximations

are detailed in Section IV.  The future of the project and the required derivatives for the

gradient are discussed in Section V.  Conclusions are drawn in Section V.

II.  Theory

The EFP2-EFP2 exchange repulsion energy expression6 has previously been used to

calculate both the inter-fragment exchange repulsion (among EFP2 potentials) and fragment-

ab inito exchange repulsion energy (between EFP2 potentials and ab initio molecules).  The

expression6 for the exchange repulsion energy before approximations is

E
XR

= !2 ij | ij( )
j"B

#
i"A

# ! 2 Sij
j"B

#
i"A

# Vij
A
+Gij

A
+Vij

B
+Gij

B$% &'

+2 Sij
j"B

#
i"A

# Skj Vik
B
+ 2Jik

B( )
k"A

# + Sil Vlj
A
+ 2Jlj

A( )
l"B

# ! Skl
l"B

#
k"A

# ik | lj( )
$

%
(

&

'
)

(1)

The integrals in Eq. (1) are defined as follows:

(ij | ij) = !i
*
(r
1
)! j (r1)""

1

r
12

!i
*
(r
2
)! j (r2 )dr1dr2 (2)

Sij = i | j( ) = !i
*
(r
1
)" ! j (r1)dr1 (3)

Vij
A
= i |

ZI

R
1I

| j
!

"#
$

%&I'A
( = )i

*
(r
1
)
ZI

R
1I

) j (r1)dr1*
I'A
( (4)

Gij

A
= 2Jij

A
! Kij

A (5)
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All orbital indices refer to molecular orbitals.  Molecular orbital !i is always on molecule A

(the ab inito molecule in the case of EFP2/ab intio exchange repulsion) while molecular

orbital !j is always on molecule B (always an EFP2). Electron 1 and electron 2 are

represented by r1 and r2, respectively.  Z
I
is the atomic number of the Ith atom and R

1I
is the

distance between electron 1 and the Ith atom. Sij is an intermolecular overlap integral and Vij

contains the electron-nuclear attraction terms. Jij
A  is commonly referred to as a Coulomb

integral and is the electrostatic repulsion between electron 1 and electron 2.  Kij

A  is

commonly referred to as an exchange integral.  The exchange integral is a quantum

mechanical integral without a simple classical analog.  The exchange integral is similar to the

Coulomb integral except for the exchange of an electron between the bra and the ket.   A

hidden sum is located on both integrals in Eq. (5). Jij
A and Kij

A can be defined as follows,

where the orbital k always resides on molecule A

Jij
A
= ij | kk( ) = !i

*
(r
1
)! j (r1)

1

r
12

"" !k
*
(r
2
)!k (r2 )dr1dr2 (6)

Kij

A
= ik | jk( ) = !i

*
(r
1
)!k (r1)

1

r
12

"" ! j

*
(r
2
)!k (r2 )dr1dr2 (7)

Approximations can be made to Eq. (1) to reduce the computational time required to

calculate the energy.  For example, the spherical Gaussian orbital (SGO) approximation10 can

be applied to the exchange integral to cast it in terms of the intermolecular overlap Sij.

Therefore, Eq. (2) can be approximated as

(ij | ij) ! 2
"2 lnSij

#

Sij
2

Rij
(8)
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Consider the terms in Eq. (2) that depend upon the intermolecular overlap integral to the first

power, Sij . These electron-nuclear attraction integrals and two electron integrals, Vij
A
+Gij

A

and Vij
B
+Gij

B , can be rewritten to avoid the computationally costly two-electron integrals by

replacing them with the Fock matrix elements of the monomers and the kinetic energy

integrals Tij .

Vij
A
+Gij

A
= Fij

A
! Tij = Fik

A
Skj ! Tij

k"A

#

Vij
B
+Gij

B
= Fij

B
! Tij = Fjl

B
Sil

l"B

# ! Tij

(9)

The Fock matrix elements of the monomers are obtained by performing a Hartree-Fock

calculation.  Once the Fock matrix is obtained in the atomic orbital (AO) basis, it is

transformed to the molecular orbital basis using the molecular orbital eigenvectors obtained

during the Hartree-Fock procedure.  This matrix is stored on disk after transformation and is

readily available.

By neglecting many of the smaller and off-diagonal integrals which depend upon the

overlap to the second power, some simplifications can be made.  Specifically, one of the

nuclear-electron attraction integrals and a two-electron integrals can be approximated as

shown in Eqs. (10) and (11).

SijSkjVik
B
! Sij

2
Vii

B
" ik (10)

SijSkl ik | lj( ) ! Sij
2
ii | jj( )" ik" lj (11)

Any integrals that remain are approximated by using classical point-charge models

Sij
2
Vij

B
=> Sij

2 !ZJRiJ
!1

j"B
#

$

%&
'

()
(12)
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Sij
2
ii | jj( ) => Sij

2
Rij

!1 (13)

The approximate form of the exchange repulsion energy6 in Eq. (1) can consequently be

written as

E
XR ! "2 2

"2 lnSij
#j$B

%
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%
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2

Rij
" 2 Sij Fik
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Skj
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"1
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%
l$A

% " Rij
"1&

'
(

)

*
+

j$B

%
i$A

%
(14)

Eq. (14) has been implemented in GAMESS and is used to calculate the exchange

repulsion energy between EFP2 potentials.  It has also been implemented to calculate the

exchange repulsion energy between an EFP2 and an ab initio molecule.  When an ab initio

molecule is present, its orbitals are localized at the end of the self-consistent field (SCF)

process, and Eq. (14) is calculated.

However, one of the primary assumptions which Eqs. (1) and (14) are built upon is

not rigorously true when an ab initio molecule is present.  A molecular orbital (!
k

) on the

ab initio molecule can be written as linear combination of atomic orbitals (!µ ),

!
k
= Cµk"µ

µ

# .  During the SCF procedure, the ab initio Fock operator in the molecular orbital

basis operates upon the molecular orbitals to obtain the molecular orbital energy eigenvalues.

The Fock operator, F
A

, contains both one and two-electron operators.  When a molecule is

isolated, the use of the Fock operator in Eq. (15) holds true.

F
A!

i
= F

ik

A!
k

k"A

# (15)

However, Eq. (15) is violated during calculations8 when an EFP2 is present because it

does not take the presence of the EFP2 into account.  Eq. (15) is the basis for Eq. (1), and
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consequently Eq. (14) as well.  Therefore, Eq. (14) cannot be used when Eq. (15) does not

hold true.  An energy expression has been derived for EXR when both EFP2 potentials and ab

initio molecules are present.  This expression8 is given without approximation in Eq. (16).

E
XR

= !2 ij | ij( )
j"B

#
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# ! 2 Sij
j"B

#
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# 2 Vij
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# ik | jj( )
$

%
&

'
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)

(16)

In order to be able to calculate the exchange repulsion energy expression (Eq. 16)

efficiently during the Hartree-Fock SCF iterations, approximations must be applied.  Because

the orbitals on the ab initio molecule are canonical (not-localized) molecular orbitals

obtained during the SCF iterations, some of the approximations applied to Eq. (1) cannot be

used to approximate Eq. (16).  The SGO approximation10 can be applied to the exchange

integral in the leading term of Eq. (16), but it must be applied in a different way than done

previously.  The SGO approximation depends upon localized orbitals, so the molecular

orbitals on molecule A are expressed as a linear combination of AOs

ij | ij( ) = CµiC!i µ j |! j( )
!

"
µ

" (17)

where µ  and !  are basis functions on the ab initio molecule.  The atomic orbitals are better

suited for the SGO approximation because they are located on the atomic centers.

The SGO approximation defines two localized molecular orbitals as two spherical (s-

type) gaussians10

!
i
"
2#
$

%
&'

(
)*
3/4

e
+# r+R

i

2

 and ! j
"
2#
$

%
&'

(
)*
3/4

e
+# r+Rj

2

    (18)

One can then obtain the corresponding exchange integral as11



www.manaraa.com

165

!
i
!

j
|!

i
!

j
" 2

#
$

%
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e
+#Rij
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                             (19)

In the SGO approximation10 ! is obtained by equating the Spherical Gaussian overlap with

the actual overlap of the appropriate LMOs

e
!
1

2
"Rij

2

= Sij                                                             (20)

Taking the log of both sides leads us to Eq. (21)

! ij = "
2

Rij
2
lnSij                                                           (21)

Two-electron integrals over s-type primitives A, B, C, D are obtained as follows11

AB |CD( ) = 2! 5 /2 / " + #( ) $ + %( ) " + # + $ + %( )
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(
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In Eq. (22) ! is the exponent for function C, ! is the exponent for function D, Rp is the

center of the product Gaussian resulting from function A and B, R
Q

is the center of the

product Gaussian resulting from function C and D.

Substituting!µ j  for ! and ", !
" j for # and $, and defining Rp and Rq, one obtains:
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Eq. (23) can be simplified to
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F
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 is the incomplete gamma function F
0
t[ ] =

1
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t

"
#$
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erf t

1

2
"
#$

%
&'

.  Eq. (24) provides a value for

the integral µ j |! j( ) .  Transforming this integral to the molecular orbital basis gives Eq.

(17)8.

The one-electron nuclear attraction integral dependent, Vij
A , is efficiently calculated

without approximation.   Approximations based on the SGO approximation have been

proposed for the two-electron integrals8 Jij
A and Kij

A .  Just as for the exchange integral defined

in Eq. (17), this approximation must make use of the AOs on the ab initio molecule.  Jij
A can

be expressed as

Jij
A = ij | kk( ) = CµiC!kC" k µ j | !"( )

"

#
!

#
µ

# (25)

Applying the multipole approximation to Eq. (25) gives us

µ j | !"( ) # S!" µ R
1Q!"

$1
j( )  (26)

Next, the SGO approximation is applied to Eq. (26).  For s-type primitives, the approximate

electron-nuclear attraction integral in Eq.(26) can be written as11:

(A | !ZI / r1I( ) | B) =
!2"
# + $( )

ZI exp !#$ / # + $( ) RA ! RB
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where Z
I
is the atomic number of atom I, ! is the orbital exponent of orbital A, ! is the

orbital exponent on orbital B, R
A

is the center of A, R
B

is the center of B, Rp is the center of

the product Gaussian formed from A and B, and R
I
is the position of atom I.

Since ! and !  are the same, because we are looking at the product spherical Gaussian

between the two orbitals A and B, Eq. (27) becomes:

(A | !ZI / r1I( ) | B) =
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2#µ j( )
ZI exp !#µ j

2 / 2#µ j( ) RA ! RB

2$
%

&
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%(

&
')

(28)

Using the !µ j defined by the SGO approximation in Eq. (21) we obtain Eq. (29):
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Multiplying Eq. (29) by SGO prefactors and simplifying:
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Therefore,
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2-
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/
0 (31)

Eq. (30) is the proposed approximation to Eq. (25).

The Fock matrix elements for molecule B in Eq. (16) are supplied in the EFP2 input

and are readily available.  The overlap integrals are one-electron integrals and are calculated

exactly.
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Approximations based on multipole expansions can be used to simplify all of the

terms which that upon the overlap squared8:

F
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Because the one-electron nuclear attraction integral involves only one molecular orbital on B

with the nuclei on molecule A, it can be replaced8 with the classical point-charge

approximation in Eq. (34).
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Finally, taking into account all of the foregoing approximations, the exchange

repulsion energy becomes8
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(35)

Before the desired EFP2-ab initio gradient can be calculated, an exchange repulsion

Fock operator must be added to the one-electron part of the Fock matrix.  The EFP2

exchange repulsion contribution to the Fock operator was formed by setting the variational

derivative of the exchange repulsion energy equal to zero8.  By adding this Fock operator to

the Fock matrix of the ab initio molecule, exchange repulsion effects are  incorporated into

the Hartree Fock calculation as the ab initio orbitals are being optimized during the SCF

iterations.  The exchange repulsion Fock operator is defined8 as
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The expression for V
mi

XR in Eq. (36) is given without approximation. V
mi

XR  is designed to be

calculated for every pair of molecular orbitals m and i (both on the ab initio molecule) and

added to the one-electron Fock matrix on every SCF iteration.  When the approximations

detailed in Eqs. (17)-(34) are applied to Eq. (36), one can obtain an approximate expression

for V
mi

XR
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III.  Results and implementation

If Eqs. (35) and (37) are implemented as presented here, unpredictable but significant

errors are introduced.  By comparing each term against the full energy expression (cf., Eq.

(16)) and Fock matrix operator (Eq. (36)), it is apparent that the approximated two-electron

integrals in Eqs. (25)-(31) are the source of this error.  Consider the contribution of the two-

electron Coulomb integrals in Eq. (25).  The contribution of these integrals to the energy,

including the multiplication by the overlap integrals and constants, can be written as

!2 Sij
j"B
#

i"A
# 4 ij | kk( )

k"A
#$

%&
'
()

(38)

The sum of all of these contributions for each molecular orbital i, j and k is given for the

water, methanol and acetone dimers in Table 8.1.  Table 8.1 also provides a comparison of

the exact two-electron integrals with the approximated integrals that come from using the

approximations in Eqs. (25)-(31). Though the approximated integrals approach the exact

value for some of the dimers in the table, other errors are large. The errors do not appear to

be predictable.

Table 8.1.  The result of summing Eq. (38) over all molecular orbital indices is compared to the

approximated values given by Eq. (31).  The values of the sums are provided in hartrees and the error

between the exact values and the approximated values are provided in kcal/mol.

Exact Answer

(h)

Approximated

(h)

Error

(kcal/mol)

Water -0.091867 -0.052722 -24.56

Methanol -0.121785 -0.123414 1.02

Acetone -0.082931 -0.078245 -2.94
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The errors in Table 8.1 are mainly due to the multipole approximation (Eq. (26)).

The multipole approximation is inaccurate when the two electrons are not sufficiently far

apart, as occurs if they are both in basis functions on the ab initio molecule (µ,!," ).

One of the primary goals of the EFP method is to provide reliably accurate results.

This cannot be accomplished with the errors that result from using Eq. (26).  As an

alternative, the exact two-electron integrals are used in place of approximated values.

Though more costly, they are exact. That is, the two-electron integrals (Gij

A
= 2Jij

A
! Kij ) in

Eq. (16) are calculated exactly while all other integral approximations used in Eq. (35) are

retained.

            

            

Figure 8.1.  The implementation of the EFP2/ab initio exchange repulsion energy was tested on six

dimers.  Starting with the structure in the top left corner and moving to the right, the dimer structures

for acetone, acetonitrile, methanol, dimethylsulfoxide, dichloromethane and water provided.

A test set of six dimers was chosen to benchmark the energy and Fock matrix

operators for the EFP2/ab initio exchange repulsion.  The same test set was used to
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benchmark the EFP2 exchange repulsion energy and gradient for EFP2-EFP2 interactions12.

Water, methanol, acetone, acetonitrile, dichloromethane and dimethylsulfoxide (DMSO)

dimers were optimized at the HF level of theory. Figure 8.1 illustrates the structures of the

six dimer geometries used in this study. At the equilibrium dimer geometries, one monomer

(B) was replaced by an EFP2, with the monomer internal geometry.

The series of six dimer calculations was benchmarked against the EFP2 method (both

molecule A and B are EFP2s), the previously implemented EFP2/ab initio exchange

repulsion energy (Eq. (15)), and a Morokuma13 energy decomposition.  The 6-31++G(d,p)14-16

basis set was used on the ab initio molecule; the same basis set was used to generate each

EFP2.  The results are shown in Table 8.2. The results for the method that is based upon Eq.

(38) are also included in Table 8.2.  Eq. (39) was added to the Fock matrix of the ab initio

molecule at each iteration of the HF SCF process.

Table 8.2.  Exchange repulsion energy values are given for water, methanol, dichloromethane,

acetonitrile, acetone and dimethylsulfoxide (DMSO) dimers.  All units are in kcal/mol.

 EFP2/EFP2 Eq. (15) Morokuma Eq. (38)

Water 4.35 4.33 4.9 5.26

Methanol 4.34 7.84 5.15 5.25

Dichloromethane 0.27 2.22 0.79 0.58

Acetonitrile 2.05 9145.39 2.21 2.57

Acetone 1.47 1.96 2.27 1.77

DMSO 6.31 Unconverged 6.38 7.53

The Morokuma energy decomposition provides the exact exchange repulsion for a

given AO basis set at the Hartree-Fock level of theory.  For all six dimers, Eq. (38)

qualitatively reproduces the Morokuma exchange repulsion energy.  Except for the DMSO
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dimer, Eq. (39) also quantitatively reproduces the Morokuma exchange repulsion energy.  It

is clear that Eq. (39) is more accurate than Eq. (15) when an ab initio  molecule is present.

However, the accuracy of Eqs. (38) and (39) come at the cost of computational

expense.  Table 8.3 provides the central processor unit (CPU) time required to complete a

single point energy calculation at the HF/EFP2 level of theory using Eq. (15), the full HF

level of theory for a dimer and a HF/EFP2 calculation using Eqs. (38) and (39).  All

calculations were performed on a 1200 Mhz IBM Power4+. The cost associated with Eqs.

(38) and (39) is more than a full HF dimer calculation.

Table 8.3.  The total job CPU time (in seconds) the implementation of Eq. (15), a Hartree-Fock dimer

calculation and the implementation of Eqs. (38) and (39).

 Eq. (15) Hartree-Fock Eqs. (38), (39)

Water 0.4 1 1.8

Methanol 1.9 12.5 25.7

Dichloromethane 4.2 28.5 69.2

Acetonitrile 3.9 37.3 65.2

Acetone 4.0 136.1 273.5

DMSO 16.7 154.4 375.2

To make the EFP2/ab initio exchange repulsion implementation useful, the efficiency

must be improved.  The first code modification was to calculate the exact two electron

integrals in the AO basis and use the integrals in the AO basis to avoid the costly

transformation to the MO basis.

The exchange repulsion energy (Eq. 38) is only calculated once during a single point

energy calculation once the SCF process has converged.  The Fock operator (Eq. (39)) is

calculated every SCF iteration.  Additionally, more CPU time is spent determining the Fock
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matrix than the exchange repulsion energy. Fortunately, this cost can be reduced by

examining the Fock matrix at various points in the iterative process.

As illustrated in Table 8.4 for water and methanol, the repulsion contribution to the

Fock matrix undergoes very small changes from iteration to iteration. The greatest deviation

of all of the elements of Eq. (39) was obtained by comparing the results of Eq. (39) at the

second SCF iteration to the values of Eq. (39) once the SCF had converged. The absolute

value of the greatest deviation between the same element m,i between both iterations is given

in Table 8.4 along with the average deviation of all of the elements m,I for water and

methanol dimer calculations.  The quantitative changes between all of the elements is very

small and only 2 of the elements of the Fock matrix experienced a sign change.

Table 8.4.  The greatest deviation and the standard deviation of the elements of the Fock matrix Vmi

are provided (in hartrees) for the water and methanol dimer.  The number of elements within the Fock

matrix which experienced a sign change is provided as well.

Dimer

Greatest

Deviation

Average

Deviation

Qualitative

Changes

Water 6.20E-06 4.91E-06 2

Methanol 1.05E-03 1.72E-04 0

Because the Fock matrix does not change significantly over ten iterations, it is not

useful to spend CPU time re-calculating it every iteration.  If the Fock matrix is calculated on

the second iteration, and then re-calculated only when the iteration index is divisible by 4

(the 4th, 8th, 12th and so on), one obtains a significant speed.  On SCF iterations when the

exchange repulsion Fock operator is not re-calculated, the most recently calculated Fock

operator is used. Table 8.5 assesses accuracy obtained using this approach. It is clear that

there is essentially no accuracy lost by calculating the repulsion contribution to the Fock
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matrix only every 4th iteration. The corresponding CPU time comparison is presented in

Table 8.6, where it is seen that considerable reduction in CPU time is achieved with virtually

no loss of accuracy.

Table 8.5.  The resulting exchange repulsion energies (in kcal/mol) when Eq. (39) is recalculated

every SCF iteration is compared against the use of an approximate Eq. (39).

 Eqs. (38), (39) Approx. V

Water 5.26 5.26

Methanol 5.25 5.24

Dichloromethane 0.58 0.58

Acetonitrile 2.57 2.56

Acetone 1.77 1.77

DMSO 7.53 7.54

Table 8.6.  CPU time (in seconds) required to use Eq. (15) for a Hartree-Fock/EFP2 calculation, a full

Hartree-Fock dimer calculation and a Hartree-Fock/EFP2 calculation which recalculates Eq. (39) on

the 2nd, 4th and every other iteration number divisible by four.

Eq. (15) Hartree-Fock Approx. V

Water 0.4 1 0.7

Methanol 1.9 12.5 5.9

Dichloromethane 4.2 28.5 14.6

Acetonitrile 3.9 37.3 11.7

Acetone 4 136.1 50.3

DMSO 16.7 154.4 63.2

IV.  Other Approximations

For the DMSO dimer the cost of forming the exact two-electron integrals needed to

calculate Gij

A
= 2Jij

A
! Kij without approximation is 23.6 seconds, roughly 1/3 of the time

spent in the entire calculation (see last column in Table 8.6).  If the number of two-electron

integrals to calculate could be reduced, it would help reduce the largest bottleneck of the

calculation.
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The Schwarz inequality can be a useful tool for avoiding the calculation of many

integrals that are negligibly small (or zero). For example, if (ij | kl)  is less than

(ij | ij) * (kl | kl) , then a block of integrals can be skipped.  The Schwartz inequality is

commonly used in electronic structure programs to avoid calculating integrals that are too

small to make significant contributions to the energy. Currently, the EFP2/ab initio algorithm

for the exact two-electron integrals Gij

A
= 2Jij

A
! Kij does not use the Schwarz inequality.

Some small modifications will be needed to implement a Schwarz inequality code for this

purpose, because not all of the required integrals are currently available.  At present, only

integrals of the form !µ | "#( )  are calculated (where ! is the only index on molecule B).  In

order to calculate the Schwarz inequality, one also needs the integrals !µ | !µ( ) and

!" | !"( ) . A future study will make use of the Schwarz inequality by using the SGO-

approximated ij | ij( )  integrals.

Semi-empirical methods have a long and successful history of ignoring many two-

electron integrals while retaining qualitative accuracy. So, preliminary tests have been

conducted to assess the possibility of employing semi-empirical approximations to avoid the

calculation of many two-electron integrals.  Traditionally, the complete neglect of differential

overlap (CNDO)17 simplifies the two-electron integral  to !! | ""( )#!µ#"$ .  For the EFP2/ab

initio integrals of interest here, the first index !  resides on the EFP2 and must be considered

as an entirely different basis set from µ . So, the zero differential overlap approximation can

only be applied to the right hand (ket) side of the !µ | "#( )  integral. This leads to

!µ | ""( )#"$ as a CNDO-like approximation for these two electron integrals.
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Neglect of diatomic differential overlap (NDDO)17 is a less drastic approximation

than CNDO.  If basis functions ! and ! are on the same atom center (but not necessarily the

same basis function), then the integral !µ | "#( )  is not ignored.  As noted above for CNDO,

the NDDO approximation can only be applied to the ket side of the integral.

A third approximation, similar to NDDO, has also been considered, that excludes all

four-center two-electron integrals.  Unlike CNDO this third approach does not neglect any

three-center integrals.  Therefore, if ! , µ , ! and ! all reside on different atom centers, the

!µ | "#( )  integral is not calculated.  However, if a common atom center is shared between

any two of the three ab initio  basis functions (µ , ! and ! ) then the integral is calculated.

This approximation is referred to as the three-center method.

Table 8.7.  Exchange repulsion energies (in kcal/mol) for the three-center, NDDO and INDO

methods compared to the predicted exchange repulsion energy from a Morokuma energy

decomposition.

 three-center NDDO CNDO Morokuma

Water 6.1 11.7 25.4 4.9

Methanol 6.2 18.8 39.6 5.15

Dichloromethane 0.85 2.4 6.1 0.79

Acetonitrile 5.3 14.1 25.3 2.21

Acetone 4.2 12.9 27.9 2.27

DMSO 11.4 33.0 80.5 6.38

The results obtained using the CNDO-like, NDDO-like and three-center methods are

summarized in Table 8.7.  The CNDO-like method is based on the most radical

approximation of three methods so it is no surprise that it suffers from the largest errors.  The

NDDO-like approximations are less radical, and the results are improved relative to those of

CNDO, but the errors are still unacceptably large.  Of the three methods, the three-center



www.manaraa.com

178

method provides the most accurate predicted exchange repulsion energies.  In fact, for water,

methanol and dichloromethane dimers, the predicted energies are within 1.5 kcal/mol.

However, the errors grow to unacceptable levels for acetonitrile, acetone and DMSO dimers.

Despite the fact that the three-center method does modestly well for three of the six

dimers, it does not reduce the computational time requirement significantly. Of the 63.2

seconds required for the DMSO dimer calculation in the last column of Table 8.6,

approximately 23.6 seconds are spent calculating the two-electron integrals.  When the three-

center method is used, the total time of the run is reduced to 104 seconds.  Even though this

saves roughly 17% of the time required to calculate the two electron integrals, the accuracy

suffers too much for it to be a useful approximation.

One consideration to keep in mind is that semi-empirical methods include

approximations for the one-electron integrals as well as the two-electron integrals, and

methods like CNDO and NDDO, these approximations are related to each other. To be

consistent, one should introduce both the one-electron and two-electron approximations.

None of the one-electron integral approximations were included in this present study.  It is

possible that the errors experienced in the two-electron integrals could be canceled or offset

by errors associated with the one-electron integrals.  In order to fairly assess the use of semi-

empirical methods, the approximations to the one-electron integrals should be included as

well.  This will be the basis for a future study.

The Mulliken approximation18,19 approximates the !µ | "#( )  two-electron integrals by

replacing them with
1

2
!µ | ""( )S#" +

1

2
!µ |##( )S#" .  The Mulliken approximation has been

tested for the water dimer, and it provides inconsistent results.  Though many integrals are
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approximated very closely, some individual integrals can experience unacceptable errors (as

much as 1 kcal/mol for just one individual integral).

V.  Gradient Considerations

The gradient (first derivative of the energy with respect to the nuclear coordinates) of

the exchange repulsion energy was derived by Rintelman9.  This is done in two steps, giving

rise to two equations.  The first equation provides the derivative of the exchange repulsion

energy with respect to the ab initio coordinates (xa)
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The second gradient expression is the first derivative of the energy with respect to the

coordinates of the EFP (xb):
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Because of the use of the product rule and the chain rule, many of the terms in Eqs.

(38) and (39) do not contain a derivative.  These terms will be easy to implement because

they can be obtained in the same manner as the energy.  Many of the terms do involve the

first derivative with respect to the nuclear coordinates.  However, GAMESS already includes

algorithms to obtain many of these derivatives.  For instance, the derivative of the overlap

integrals with respect to the nuclear coordinates, Sij
a , can be obtained in the AO basis through

the subroutine DSTINT and then transformed to the MO basis.  Derivatives of the classical

point-charge approximations used in Eq. (34) can be handled in the same manner as they are

in the EFP2-EFP2 (fragment-fragment) gradient because they are used in the EFP2-EFP2

energy and gradient expression.  These examples can be found in the GAMESS subroutine

GEXREP.

Some new subroutines will need to be created for certain derivatives, but they can be

obtained in a relatively easy fashion by slightly modifying existing subroutines.  The

derivative of the one-electron nuclear-attraction integral Vij
A
a

can be obtained by making a
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modified version of STVDER, just as a modified version of STVINT was created to obtain

the Vij
A  integrals.  The derivative of the electrostatic integrals, V

ik

EFP,B , can be formed by

modifying DEFCEF just as EFCEF was modified to form the integrals. GAMESS contains

subroutines to calculate the derivatives of two-electron integrals.  However, all of these

routines, starting with the driver JKDER will have to be copied and modified.  All of the

information about the j shell in the ji | kl( )  integral will have to be modified in every routine

called by JKDER so that the code is using the EFP basis set information rather than the ab

initio basis set.  A similar procedure had to be done to the GAMESS subroutine TWOEI to

obtain the ji | kl( )  integrals.  This new driver, called EFP2EI, can be used as a model to learn

how these changes must be made correctly to the JKDER driver and the subroutines it calls.

Lastly, derivatives of Fock matrix elements must be obtained.  GAMESS already has the

ability to calculate these for molecule A, so some small changes must be made to handle

them for molecule B as well.

VI.  Conclusions

The implementation of the proper ab initio/EFP2 exchange repulsion energy into the

GAMESS program is complete.  The corresponding exchange repulsion Fock operator has

also been coded.  Both expressions have been tested upon six dimers and provide promising

results.  The accuracy of both expressions is good when the real two-electron integrals are

used in those instances in which current approximations fail.  The code has been made more

efficient by avoiding the re-calculation of the Fock operator during every SCF iteration and

by computing the integrals directly in the AO basis.  Though computationally slower than the

energy expression it replaces, the implemented energy is physically correct.  The current
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computational bottleneck lies in the calculation of the two-electron integrals and it is likely

that a future implementation of the Schwarz inequality will reduce this bottleneck.  As it is

currently implemented, the method is faster than a Hartree-Fock dimer calculation yet it

provides results that approach perturbation theory in accuracy.  With this in mind, the method

is obtains very good results with modest efficiency.

Geometry optimizations cannot be calculated because the gradient is not

implemented.  However, the first derivative of the energy was considered and the means to

obtain each derivative type was discussed.  A future implementation of the gradient can reuse

many subroutines of the energy and several existing subroutines will need modification for

the gradient.
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CHAPTER 9:  CONCLUSIONS

The solvation of fluorine and chlorine anions was detailed in chapter 2.  The goal of

the study was to find how large an aqueous solvent cluster must be in order to achieve

complete solvation.  Fluorine anions preferred to reside on the surface of the solvent cluster

until fifteen or more water molecules are present and the chlorine anion required eighteen

water molecules before the completely solvated structure was favored.  Though the water

molecules were expressed as Effective Fragment Potentials, fully ab initio single point

energies qualitatively confirmed the results.  The binding energies and differential binding

energies predicted by the calculation qualitatively agree with those obtained from ab intio

calculations and experimental data from the literature.  The internal geometries of the water

molecules were held frozen by the potential but the fully ab initio optimizations showed that

this was not an unreasonable approximation to make.

The dipole moment of the water molecule, and how it changes as that water molecule

is surrounded with other water molecules, is presented in chapter 3.  The goal of this project

was to see how many water molecules must be present for the dipole to be enhanced from the

monomer value (1.85 Debye) to the bulk value (approximately 2.9 Debye).  The smallest

cluster size examined contained a total of six water molecules and the dipole moment was

closer to the bulk value than to the monomer value.  As more solvent molecules were added,

it was found that the dipole moment had matched the bulk value (2.9 Debye) with only

twenty total molecules even though the structures for n=20 did not resemble bulk water.  A

dipole that agreed well with the bulk dipole was obtained for n=32,41 and 50 water

molecules and all of these structures preferred to have a bulk-like arrangement of the solvent

molecules.  Of most interest to this project though is learning why the dipole moment
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changes when in solution.  Use of localized molecule orbitals and localized charge

distributions show that the dipoles of each individual orbital do not change drastically but the

orientation of those vectors does.  The dipole vectors along the lone pair orbitals come closer

together (ie, the angle between them decreases).  This leads to less vector cancellation of

these dipole vectors and to a greater enhancement of the molecular dipole.  The bonding

orbitals did not contribute significantly to the molecular dipole, nor do they change

significantly when placed in the presence of a water solvent.

The structure of bihalide anions solvated by water was studied with ab initio MP2 and

CCSD(T) calculations and is detailed in chapter 4.  This study was inspired by previous

research done by Newmark and co-workers who solvated bihalide anions with one solvent

molecule and used many different solvents.  Newmark and co-workers were able to

determine which solvated species was observed experimentally by the results of their theory.

However, a similar theoretical investigation needed to be done for when more solvent

molecules are present.  Though up to four water molecules donate all of their hydrogen atoms

to solute for hydrogen bonding, these species are higher in energy when three or four water

molecules are present.   This was found to be true of both anions.  As the number of water

molecules increases, the negative Mulliken charges on the halide atoms and the positive

charge on the hydrogen atom are reduced.  Besides basic steric hindrance, this may help

provide some insight into why the water molecules prefer interaction with each other over

exclusive interaction with the bihalide anion.

The aqueous solvation of the nitrate anion was presented in chapter 5.  Only clusters

containing n=15,32 water clusters were considered.  The goal of this study was to determine

if the Effective Fragment Potential method would predict whether the anion resided on the
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surface or inside the cluster.  Comparisons were made to previous literature studies which

were based upon molecular mechanics.  The literature tends to be conflicted about the nature

of these anions and many results seem to depend upon the type of molecular mechanics

potential used in the simulation.  In order to put these issues to rest, MP2 single point

energies were used to compare with the EFP results.  Full MP2 optimizations were

performed so that the true nature of the lowest energy anions could be discovered.
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